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Optimal prediction

Recall: The solution to

min
g

E [(Y − g(X ))2]

is given by
g(X ) = E [Y |X ].

We interpreted this as: E [Y |X ] is the optimal mean-square-error
predictor of Y .



Projection interpretation

We will now interpret the conditional expectation as an orthogonal
projection.

Vector space: H is the space of all linear combinations of Y and
h(X ), where h(·) is any function with E [h(X )2] <∞.

Subspace: HX is the space of all random variables h(X ).

Inner product: 〈W1,W2〉 = E [W1W2].

Projection: Find g ∈ HX to solve

min
g∈HX

‖Y − Ŷ ‖2

where Ŷ = g(X ). Let U = Y − Ŷ . Solution will satisfy

〈U, h(X )〉 = E [Uh(X )] = 0

for all h ∈ Hx .



Projection interpretation

We’ll show that E [Y |X ] solves this orthogonality condition. We
have

E [(Y − E [Y |X ])h(X )] = EX [EY |X [(Y − E [Y |X ])h(X )]]

= EX [EY |X [(Y − E [Y |X ])]h(X )] = 0

So, the conditional expectation solves the minimum-norm problem
when we project Y onto the space of all functions h(X ).

The best linear predictor solved this problem when we
projected onto the space of linear functions of X .



Projection interpretation
We can also show that if

E [Ug(X )] = 0

for all g , then E [U|X ] = 0.
By the projection theorem, the solution g∗ to

min
g

E [(U − g(X ))2]

satisfies E [(U − g∗(X ))g(X )] = 0 and we know that
g∗(X ) = E [U|X ].

Why is this useful? You may be used to seeing someone write

Y = g(X ) + U

and then make some assumptions about U. What they specify
about U tells you what projection problem g(X ) solves i.e. what
subspace we’re projecting Y onto.



Projection interpretation

Interpreted E [Y |X ] as the orthogonal projection of Y onto the
space of all functions of X .

Can we connect E [Y |X ] to the best linear predictor E ∗[Y |1,X ]?
Yes - in two ways.

E ∗[Y |1,X ] as the best linear approximation to E [Y |X ].
E [Y |X ] as the limit of increasingly flexible linear predictors.



E ∗[Y |1,X ] as best linear approximation to E [Y |X ]

For simplicity, let r(X ) = E [Y |X ]. This could be a very complex
function and so, we may wish to approximate it.

Claim: E ∗[r(X )|1,X ] = E ∗[Y |1,X ].
Let U = Y − r(X ). We know U ⊥ g(X ) for all g . In
particular, we have U ⊥ 1,X . So,

E ∗[U|1,X ] = E ∗[Y |1,X ]− E ∗[r(X )|1,X ] = 0.

⇒ “The best linear predictor is the best linear approximation of the
conditional expectation.”

⇒ “The best linear predictor is the orthogonal projection of E [Y |X ]
onto the space of linear functions of X .”



E [Y |X ] as increasingly flexible linear predictors

Start with single variable X . Consider the best linear predictor of Y
using a polynomial of order M:

E ∗[Y |1,X ,X 2, . . . ,XM ]

As M increases, the squared prediction error cannot increase since
we are projecting onto larger and larger subspaces.

So
E [(Y − E ∗[Y |1,X ,X 2, . . . ,XM ])2]

is decreasing in M and bounded below at 0. It must have a limit.



E [Y |X ] as increasingly flexible linear predictors

We assume that E ∗[Y |1,X ,X 2, . . . ,XM ] has a limit and we call it

E [Y |X ] = lim
M→∞

E ∗[Y |1,X ,X 2, . . . ,XM ].

Intuition:
As M increases, I am using increasingly flexible functions to
predict Y .
As M increases, I am using increasingly flexible functions to
approximate E [Y |X ].



E [Y |X ] as increasingly flexible linear predictors

With this definition of E [Y |X ], we know that U = Y − E [Y |X ]
satisfies

U ⊥ X j

for all j ≥ 0. Because we can approximate general functions g(X )
by polynomials, we will have that

U ⊥ g(X )

.



Exercise

Let E [Y |Z ] be the conditional expectation of Y given Z . Let
U = Y − E [Y |Z ] and let

V (Y |Z ) = E [(Y − E [Y |Z ])2|Z ] = E [U2|Z ]

be the conditional variance of Y given Z .

(1) Show that

V (U) = E [U2] = E [V (Y |Z )].

(2) Show that

V (Y ) = V (E [Y |Z ]) + E [V (Y |Z )].
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Discrete regressors

We interpreted E ∗[Y |1,X ] as the best linear approximation of
E [Y |X ].

When will E ∗[Y |1,X ] = E [Y |X ]? Whenever E [Y |X ] is linear!

One case: whenever the regressors are discrete.
The conditional expectation is a linear function of
appropriately defined transformations of the discrete regressors.



Discrete regressors

To match the notation from lecture, consider regressors Z1,Z2.
Assume that they take only a finite set of values

Z1 ∈ {λ1, . . . , λJ}

Z2 ∈ {δ1, . . . , δK}.

Define

Xjk =

{
1, Z1 = λj , Z2 = δk

0, otherwise

or Xjk = 1(Z1 = λj ,Z2 = δk).



Discrete regressors

Claim:

E [Y |Z1,Z2] = E ∗[Y |X11, . . . ,XJ1, . . . ,X1K , . . . ,XJK ].

Why? Any function g(Z1,Z2) can be written as

g(Z1,Z2) =
J∑

j=1

K∑
k=1

γjkXjk

with γjk = g(λj , δk).



Discrete regressors: sample analog

The data are {(yi , zi ,1, zi ,2)}ni=1. Construct the dummies

xi ,jk = 1(zi ,1 = λj , zi ,2 = δk)

and let

y =

y1
...
yn

 , xjk =

x1,jk
...

xn,jk


for j = 1, . . . , J, k = 1, . . . ,K .



Discrete regressors: sample analog

The coefficients of the least-squares fit are

min ‖y −
∑
j

∑
k

bjkxjk‖2.

Claim:

bjk =

∑
i yixi ,jk∑
i xi ,jk

= ȳjk

where ȳjk is the sample average of yi over values with zi1 = λj and
zik = δk .



Discrete Regressors: sample analog

Why? We know

〈y −
∑
j

∑
k

bjkxjk , xlm〉 = 0

for each l ,m. Moreover, the dummies are orthogonal to each other

〈xjk , xlm〉 = 0

unless j = l , k = m. So, we have that

〈y −
∑
j

∑
k

bjkxjk , xlm〉 = 〈y , xlm〉 − blm〈xlm, xlm〉 = 0

.


	The Conditional Expectation
	Optimal prediction
	Projection interpretation
	Best linear approximation
	Limit of flexible linear predictors

	Discrete Regressors

