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Omitted Variables Bias

I’ll follow the lecture notes and quickly cover the basic, linear IV model.
We’ve seen this material before so it should be familiar.

Suppose that we are interested in the long regression

E [Yi |FBi ,EDi ,Ai ] = FB ′iφ+ EDiβ + Ai .

Ai is unobserved. Suppose there is an additional variable SUBi that is
observe – this is our instrument. It satisfied two exclusion restrictions:

(1): E [Yi |FBi , SUBi ,EDi ,Ai ] = FB ′iφ+ EDiβ + Ai .

(2): E ∗[Ai |FBi ,SUBi ] = FB ′iλ.
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Linear IV estimator

Define the prediction errors

εi = Ai − E ∗[Ai |FBi ,SUBi ]

Ui = Yi − E [Yi |FBi , SUBi ,EDi ,Ai ]

and write

Ai = FB ′iλ+ εi ,

Yi = FB ′iφ+ EDiβ + Ai + Ui .

Subbing in for Ai , we get that

Yi = FB ′i (φ+ λ) + EDIβ + (εi + Ui )

= FB ′i δ + EDiβ + Vi

where δ = φ+ λ, Vi = εi + Ui .
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Linear IV estimator

FBi ,SUBi are orthogonal to Vi . This will give us the moments needed to
estimate β. Define

Ri = (FB ′i EDi ), Bi =

(
FBi

SUBi

)
, γ =

(
δ
β

)
.

The exclusion restrictions give us that

Yi = Riγ + Vi , E [BiVi ] = 0.

This fits into our Linear GMM framework from earlier and we’re off to the
races. See the lecture notes for details.
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Presentation here follows the Vadim Marmer’s (UBC) excellent lecture
notes on weak instruments – see his website for the latest version.

Stock & Watson (2008) NBER SI Methods lectures are also a great
resource.
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Classic IV algebra
We observe (yi1, yi2,Zi1,Zi2), where yi ,1 is the dependent variable, yi2
is the single endogenous variable, Zi1 is L-dimensional vector of
instruments and Zi2 is the M-dimensional vector of exogenous
regressors.
The IV regression model is

yi1 = γyi2 + Z ′i2β + ui

yi2 = Z ′i1π1 + Z ′i2π2 + vi ,

where E [Zi1ui ] = E [Zi1vi ] = E [Zi2ui ] = E [Zi2vi ] = 0. y2i is
endogenous if E [uivi ] 6= 0.
Denote the n-dimensional vectors y1, y2,Z1,Z2, u, v and, the model
becomes

y1 = γy2 + Z2
n×M

β + u

y2 = Z1
N×L

π1 + Z2
N×M

π2 + v .
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IV estimation

We’ll residualize the first-stage and structural equations with respect to the
included exogenous variables. Define

M2 = In − Z2(Z ′2Z2)−1Z ′2.

This is the annihilator matrix that projects vector onto the orthogonal
complement of the space spanned by the columns of Z2. It is symmetric
and idempotent M2 = M ′2, M2M2 = M2. So, the OLS estimator π1 is

π̂1 = (Z ′1M2Z1)−1Z ′1M2y2

from residualizing the first-stage.

Residualize the structural equation and then, regress y1 on Z1M2π̂1, we get
that

γ̂ =
(M2Z1π̂1)′y1

(M2Z1π̂1)′(M2Z1π̂1)
=

π̂′1Z
′
1M2y1

π̂′1Z
′
1M2Z1π̂1
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Asymptotics of IV estimator

Provided that the first-stage coefficients are fixed and different from zero,
π1 6= 0, we can apply a WLLN and CLT.

We’ll assume that
(1) The data (yi1, yi2,Zi1,Zi2) are i.i.d.

(2) E [

(
Zi1Z

′
i1 Zi1Z

′
i2

Zi2Z
′
i1 Zi2Z

′
i2

)
] =

(
Q11 Q12
Q21 Q22

)
is finite and positive

definite.

(3) E [

(
ui
vi

)(
ui
vi

)′
|Zi1,Zi2] =

(
σ2
u σuv

σuv σ2
v

)
is finite and positive

definite.
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Consistency of IV estimator

We have that π̂1 = (Z ′1M2Z1)−1Z ′1M2y2 and so,

π̂′Z ′1M2 = y ′2M2Z1(Z ′1M2Z1)−1Z ′1M2 = y ′2PM2Z1 ,

π̂′Z ′1M2Z1π̂ = y ′2M2Z1(Z ′1M2Z1)−1Z ′1M2y2 = y ′2PM2Z1y2,

where PM2Z1 = M2Z1(Z ′1M2Z1)−1Z ′1M2 is the projection matrix onto the
space spanned by the columns of M2Z1.

We can substitute this into the expression for γ̂ and we get that

γ̂ =
y ′2PM2Z1y1

y ′2PM2Z1y2
.



13/62

Consistency of IV Estimator

We now substitute the structural equation into the numerator,
y1 = γy2 + Z2β + u. We get that

γ̂ = γ +
y ′2PM2Z1u

y ′2PM2Z1y2

= γ +
y ′2M2Z1(Z ′1M2Z1)−1Z ′1M2u

y ′2M2Z1(Z ′1M2Z1)−1Z ′1M2y2

= γ +
(Z1π1 + v)′M2Z1(Z ′1M2Z1)−1Z ′1M2u

(Z1π1 + v)′M2Z1(Z ′1M2Z1)−1Z ′1M2(Z1π1 + v)

= γ +
(Z ′1M2Z1π1 + Z ′1M2v)′(Z ′1M2Z1)−1Z ′1M2u

(Z ′1M2Z1π1 + Z ′1M2v)′(Z ′1M2Z1)−1(Z ′1M2Z1π1 + Z ′1M2v)

Using a LLN, we have that

Z ′1Z1

n

p−→ E [Zi1Z
′
i1] = Q11,

Z ′1Z2

n

p−→ Q12,
Z ′2Z2

n

p−→ Q22.
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Consistency of IV estimator (cont.)
Using the LLN results and that M2 = In − Z2(Z ′2Z2)−1Z ′2,

Z ′1M2Z1

n
=

Z ′1Z1

n
− Z ′1Z2

n
(
Z ′2Z2

n
)−1Z

′
2Z1

n
p−→ Q11 − Q−1

12 Q−1
22 Q ′12 = Q1·2,

where Q1·2 is positive definite. Moreover, we have that

Z ′1u

n

p−→ E [Zi1ui ] = 0,

Z ′2u

n

p−→ E [Zi2ui ] = 0.

So,

Z ′1M2u

n
=

Z ′1u

n
− Z ′1Z2

n
(
Z ′2Z2

n
)−1Z

′
2u

n

p−→ 0− Q12Q
−1
22 0 = 0.

By a similar argument, Z ′1M2v
n

p−→ 0.
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Consistency of IV estimator (cont.)

Using these results, it is immediate that

γ̂
p−→ γ +

(Q1·2π1 + 0)′Q−1
1·20

(Q1·2π1 + 0)′Q−1
1·2 (Q1·2π1 + 0)′

= γ,

which holds because π1 6= 0 by assumption.
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Limiting distribution of IV estimator

Begin with

γ̂ = γ +
(Z ′1M2Z1π1 + Z ′1M2v)′(Z ′1M2Z1)−1Z ′1M2u

(Z ′1M2Z1π1 + Z ′1M2v)′(Z ′1M2Z1)−1(Z ′1M2Z1π1 + Z ′1M2v)
.

And re-write to get that

√
n(γ̂ − γ) =

n−1/2π′1Z
′
1M2u + op(1)

n−1π′1Z
′
1M2Z1π1 + op(1)

.

From the CLT, we have that

n−1/2
(
Z ′1u
Z ′2u

)
d−→ N(0,E [u2

i

(
Z 2
i1 Zi1Z

′
i2

Zi2Z
′
i1 Z 2

i2

)
] = N(0, σ2

uQ)

under the assumption of homoskedasticity.
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Limiting Distribution of IV estimator

Introduce notation (
Φ1
Φ2

)
∼ N(0, σ2

uQ).

Using the CLT from earlier, we have that

Z ′1M2u√
n

=
Z ′1u√
n
− Z ′1Z2

n
(
Z ′2Z2

n
)−1Z

′
2u√
n

d−→ Φ1 − Q ′12Q
−1
22 Φ2 = Φ1·2, V (Φ1·2) = σ2

uQ1·2.

So, Z ′1M2u√
n

d−→ Φ1·2 ∼ N(0, σ2
uQ1·2).

It then follows that

√
n(γ̂ − γ)

d−→ π′Φ1·2
π′1Q1·2π1

∼ N(0, σ2
uπ
′
1Q1·2π1)

π′1Q1·2π1
∼ N(0,

σ2
u

π′1Q1·2π1
).
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Weak Instruments - Motivation

Note that the asymptotic variance of γ̂ is inversely proportional to

‖π1‖2Q1·2 = π′1Q1·2π1.

So, when π1 is close to zero, the asymptotic variance is larger. “Weaker”
instruments correspond to instruments with smaller ‖π1‖2Q1·2

.

The asymptotics above assumed that π1 is fixed as n→∞. As a result,
the estimation error for γ is always ‘small” relative to π for large enough n.

The estimation error is Op( 1√
n

).

However, when we are dealing with finite samples, it is possible that
the estimation error and π1 have similar magnitude.
⇒ These asymptotic results will provide a poor approximation to the
behavior of γ̂ in finite samples.
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Weak Instruments – Intro

Suppose there is a single endogenous regressor, no exogenous regressors
and a single instrument:

y1 = γy2 + u

y2 = π1Z1 + v .

The IV estimator is then

γ̂ =
Z ′1y1

Z ′1y2

= γ +
Z ′1u

π1Z ′1Z1 + Z ′1v

= γ +
n−1/2Z ′1u

π1n−1/2Z ′1Z1 + n−1/2Z ′1v
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Weak Instruments – Intro

We can write this as

γ̂ = γ +
Op(1)

π1n−1/2Z ′1Z1 + Op(1)
,

where n−1/2Z ′1u = Op(1), n−1/2Z ′1v = Op(1) can be justified by a CLT.
These terms are the noise due to estimation – they’re a function of the
errors.

Note that the term

n−1/2Z ′1Z1 = n1/2(n−1Z ′1Z1)
∞−→

by the WLLN. The term, π1n
−1/2Z ′1Z1 is the signal in the data about γ.

Note that provided π1 6= 0, the signal component blows up to infinity and
the signal will dominate the noise in large samples.
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Weak Instruments – Intro

If π1 = 0, then Z1 is irrelevant and the data contains no information about
γ. Then,

γ̂ − γ =
n−1/2Z ′1u

n−1/2Z ′1v

d−→ Zu

Zv
,

(
Zu

Zv

)
∼ N(0,Σ).

Weak instrument case: The data contains only “some” information about
γ. Model this by assuming that the signal and noise are of the same order
of magnitude. That is,

π1n
−1/2Z ′1Z1

p−→ C ,

for some constant C . We accomplish this by assuming π1 = C
n1/2 and so,

the signal component then converges to C · E [Z 2
i1]. The signal will no

longer dominate the noise and γ̂ is inconsistent.
Known as “local-to-zero asymptotics” and first proposed by Stock &
Staiger (1997) for formalizing the problem of weak instruments.
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Potential Outcomes

Dominant framework for defining causal effects in statistics and
econometrics.

Begin with a brief review following the notation set up in lecture. We focus
attention on the case of a binary treatment Ti ∈ {0, 1}.
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Potential Outcomes

For each unit i , pair of potential outcomes (Yi (0),Yi (1)).
Notation implicitly imposes the stable unit treatment value
assumption (SUTVA).
Potential outcomes for any unit do not vary with the treatments
assigned to other units and there are no hidden versions of the
treatment.

Potential outcomes give the value of the outcome Yi that would be
observed if unit i receives either control (Ti = 0) or treatment (Ti = 1).
Observed outcome is

Yi ≡ Yi (Ti ) =

{
Yi (1) if Ti = 1
Yi (0) if Ti = 0

or
Yi = Yi (1)Ti + Yi (0)(1− Ti ).
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Causal Effects

Causal effects are defined for each unit i using i ’s potential outcomes.
The causal effect for unit i is

τi = Yi (1)− Yi (0).

Causal effect of treatment is allowed to vary across units i.e. the
treatment effects may be heterogeneous.

Define
m(t) = E [Yi (t)] for t ∈ {0, 1}.

This is average potential outcome function. The average treatment
effect (ATE) is

ATE = E [Yi (1)− Yi (0)].

For now, E [·] is an expectation over some super-population.
Will return to this.
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Fundamental Problem of Causal Inference

The fundamental problem of causal inference is that given a treatment
assignment, we only observe one potential outcome for each unit.

Phrase coined by Rosenbaum (1986).

Causal inference is a missing data problem. How do we solve this?
Note that it is not enough to simply observe (Yi ,Ti ) for many units
due to selection bias.
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Selection Bias

There is selection bias if comparing the average outcome of units that
received the treatment to the average outcome of units that received the
control does not equal ATE.

Define
r(t) = E [Yi |Ti = t]

to be the regression function for t ∈ {0, 1}. There is selection bias if

r(t) 6= m(t).

Example: “Roy Model” - individuals select into college based on
expectations of earnings.



28/62

Worst-case bounds on ATE

Can we learn anything about ATE without additional assumptions? Yes.

Suppose that Y (0),Y (1) ∈ [0, 1]. And consider, E [Y (1)]. We have that

E [Y (1)] = E [Y (1)|T = 1]P(T = 1) + E [Y (1)|T = 0]P(T = 0).

We can identify E [Y (1)|T = 1],P(T = 1),P(T = 0) in the data and
E [Y (1)|T = 0] is not identified. But, by assumption, we have that

0 ≤ E [Y (1)|T = 0] ≤ 1.

So, we immediately have that

E [Y (1)|T = 1]P(T = 1) ≤ E [Y (1)]

E [Y (1)] ≤ E [Y (1)|T = 1]P(T = 1) + P(T = 0).

These are worst case bounds on E [Y (1)].
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Worst-case bounds on ATE

We can similarly derive worst-case bounds on E [Y (0)]. We have that

E [Y (0)] = E [Y (0)|T = 1]P(T = 1) + E [Y (0)|T = 0]P(T = 0).

We can identify P(T = 1),E [Y (0)|T = 0],P(T = 0) from the data and
E [Y (0)|T = 1] is not identified. Using the assumption Y (0) ∈ [0, 1], we
have

E [Y (0)|T = 0]P(T = 0) ≤ E [Y (0)]

E [Y (0)] ≤ P(T = 1) + E [Y (0)|T = 0]P(T = 0)
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Worst-case bounds on ATE

ATE = E [Y (1)]− E [Y (0)]. So, an upper-bound on ATE is

E [Y (1)|T = 1]P(T = 1) + P(T = 0)− E [Y (0)|T = 0]P(T = 0)

and a lower-bound on ATE is

E [Y (1)|T = 1]P(T = 1)− P(T = 1)− E [Y (0)|T = 0]P(T = 0).

The length of this interval is 1, so only looking at the data halved the
bounds on ATE.
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Random Assignment

A sufficient assumption to identify ATE is random assignment. That is,

(Yi (1),Yi (0)) ⊥ Ti

or the treatment is independent of the set of potential outcomes.

Under this assumption,

r(1) = E [Yi |Ti = 1]

= E [Yi (1)|Ti = 1]

= E [Yi (1)] = m(1)

Similarly, r(0) = m(0). As a result, ATE is identified by the regression
function:

ATE = E [Yi (1)− Yi (0)] = E [Yi |Ti = 1]− E [Yi |Ti = 0].
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Sources of Uncertainty

Two sources of uncertainty in potential outcomes model:
Sampling-based uncertainty
Design-based uncertainty
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Sampling-based Uncertainty

Sample of units i = 1, . . . ,N drawn randomly from a super-population of
interest.

If we resampled from the population, we would observe a different set
of units.

View the pair of potential outcomes (Yi (0),Yi (1)) as a random vector with
(Yi (0),Yi (1)) i.i.d. from some distribution F .
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Design-based Uncertainty

Design-based uncertainty arises due to the random assignment of units in
our sample to treatments.

The units i = 1, . . . ,N are now fixed but the treatment Ti is random.
Each time we randomize the treatment we would observed different
outcomes.
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What does it matter?
We defined the average treatment effect in terms of some target
super-population

ATE = E [Yi (1)− Yi (0)]

where the expectation is taken over some population distribution F for the
pair (Yi (0),Yi (1)).

Imbens & Wooldridge (2007) refers to this as the population
average treatment effect (PATE). Sampling uncertainty in addition
to design uncertainty.

Alternative definition conditions on the given sample and defines

ATE = N−1
N∑
i=1

Yi (1)− Yi (0)

.
Imbens & Wooldridge (2007) refers to this as the sample average
treatment effect (SATE). Only design uncertainty.

These are different objects!
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Conditional Random Assignment

Treatment is not randomly assigned but is "as if" randomly assigned
among similar units.

additionally observe some covariates Wi that take values in the set W
and assume that the treatment is randomly assignment conditional
on Wi or

(Yi (1),Yi (0)) ⊥ Ti |Wi .

This is referred to as conditional random assignment,
unconfoundedness or selection on observables.
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Conditional Average Treatment Effects

Let m(t|w) be the average potential outcome function conditional on
Wi = w and let r(t,w) denote the regression function.

m(t|w) = E [Yi (t)|Wi = w ] and r(t,w) = E [Yi |Ti = t,Wi = w ].

With conditional random assignment, the regression function identifies the
average potential outcome function conditional on Wi = w .

r(t,w) = E [Yi |Ti = t,Wi = w ]

= E [Yi (t)|Ti = t,Wi = w ]

= E [Yi (t)|Wi = w ] = m(t|w).
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Conditional Average Treatment Effects

Can use the regression function to identify the conditional average
treatment effect (CATE)

CATE (w) = E [Yi (1)− Yi (0)|Wi = w ]

Under conditional random assignment,

r(1,w)− r(0,w) = E [Yi |Ti = 1,Wi = w ]− E [Yi |Ti = 0,Wi = w ]

= E [Yi (1)|Ti = 1,Wi = w ]− E [Yi (0)|Ti = 0,Wi = w ]

= E [Yi (1)|Wi = w ]− E [Yi (0)|Wi = w ] = CATE (w).
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Identifying ATE?

Not sufficient to identify the average potential outcome function nor the
average treatment effect.

May be parts of the covariate distribution w ∈ W in which there are
no individuals in both treatment and control.
⇒ we cannot estimate the regression r(1,w) or r(0,w) at this value
w .

Need additional assumption

0 < P(Ti = 1|Wi = w) < 1

for all w ∈ W. Known as overlap.

If the treatment Ti satisfies conditional random assignment and overlap,
referred to as a strongly ignorable treatment assignment.
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Identifying ATE?

With both assumptions, can identify the average potential outcome
functions and the average treatment effect by averaging over the
distribution of Wi .

m(t) = E [Yi (t)]

= E [E [Yi (t)|Wi ]]

= E [r(t,Wi )]

and

ATE = E [Yi (1)− Yi (0)]

= E [E [Yi (1)− Yi (0)|Wi ]]

= E [r(1,Wi )− r(0,Wi )].



42/62

Exercise 1

We have data on a random sample of individuals (i = 1, . . . , n), with
observations on an outcome Yi , an indicator Ti = 0, 1 for which of two
treatments was received, and a vector of individual characteristics Wi .
There is a pair of random variables, Yi (0);Yi (1) and

Yi = 1(Ti = 1)Yi (1) + 1(Ti = 0)Yi (0).

There are two regression functions corresponding to the average potential
outcomes

m(0|w) = E [Yi (0)|Wi = w ], m(1|w) = E [Yi (1)|Wi = w ].

Let γ = E [Yi (1)− Yi (0)] = ATE .
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Exercise 1 (continued)

Suppose that the treatment is assigned by

Ti = 1 if m(1|Wi )−m(0|Wi ) ≥ Ci

where Ci is unobserved.

(1) Suppose that Ci is independent of (Yi (0),Yi (1)) conditional on Wi .
Show that γ is identified.
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The propensity score

The probability of treatment given a value of Wi is incredibly useful
function in causal inference. Called the propensity score, denoted

e(w) = E [Ti |Wi = w ] = P(Ti = 1,Wi = w).
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The propensity score

Theorem
Suppose that the treatment is conditionally independent of the potential
outcomes given Wi . Then,

(Yi (1),Yi (0)) ⊥ Ti |e(Wi ).
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The propensity score

Proof of theorem:
Show that
P(Ti = 1|Yi (0),Yi (1), e(Wi )) = P(Ti = 1|e(Wi )) = e(Wi ). We have
that

P(Ti = 1|Yi (0),Yi (1), e(Wi )) = E [Ti |Yi (0),Yi (1), e(Wi )]

= E [E [Ti |Yi (0),Yi (1), e(Wi ),Wi ]|Yi (0),Yi (1), e(Wi )]

= E [E [Ti |Yi (0),Yi (1),Wi ]|Yi (0),Yi (1), e(Wi )]

= E [E [Ti |Wi ]|Yi (0),Yi (1), e(Wi )]

= E [e(Wi )|Yi (0),Yi (1), e(Wi )] = e(Wi )
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Estimating ATE under strong ignorability

Assume that conditional random assignment and overlap both hold. We
observe a data set consisting of N observations. For each observation, we
observe the triple (Yi ,Ti ,Wi ).

enormous literature that studies the properties and relative benefits of
these methods

Provide a very (very) brief introduction to some of these techniques.
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Regression

Suppose r̂(t,w) is a consistent estimators of the conditional expectation
function r(t,w) = E [Yi |Ti = t,Wi = w ].

The simplest estimator of the average treatment effect simply
averages over the empirical distribution of Wi :

ˆATE =
1
N

N∑
i=1

r̂(1,Wi )− r̂(0,Wi ).
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Regression

Consider two cases in lecture:
Ti ,Wi are both binary and take on values Ti ∈ {0, 1} and
Wi ∈ {w0,w1}.

Population linear predictor that includes all dummy variables is
the conditional expectation function

Ti is binary and Wi is a scalar.
r(0,w) and r(1,w) are continuous functions
Proposed using polynomials or splines to approximate the
conditional expectation functions. Examples of non-parametric
regression

Intuition of this approach:
Use estimated regression function to impute the missing potential
outcomes. For instance, if Ti = 1, then we observe Yi (1) and impute
Yi (0) using r̂(0,Wi ).
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Matching

Idea: impute the missing potential outcomes by looking at the observed
outcomes of the "nearest neighbors" in the opposite treatment group.

Let lm(i) be the index l that satisfies Tl 6= Ti and∑
j :Tj 6=Ti

1(‖Wj −Wi‖ ≤ ‖Wl −Wi‖) = m.

In English, lm(i) is index of the unit in the opposite treatment group
that is the m-th closest unit to i in terms of covariate distance based
on the norm ‖ · ‖.
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Matching

Let LM(i) be the set of indices for the first M matches of unit i . The
imputed potential outcomes are given by

Ŷi (0) =

{
Yi if Ti = 0,
1
M

∑
j∈LM(i) Yj if Ti = 1

Ŷi (1) =

{
1
M

∑
j∈LM(i) Yj if Ti = 0,

Yi if Ti = 1.
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Matching

Number of matches M must be selected as well as the distance measure
‖ · ‖.

Euclidean distance, de(wi ,wj) = (wi − wj)
′(wi − wj).

Common to standardize the covariates by using Mahalanobis
distance with

dM(wi ,wj) = (wi − wj)
′Σ−1

W (wi − wj),

where ΣW is the covariance matrix of the covariates that must be
estimated.
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Inverse Propensity Score Weighting

Conditional random assignment conditional on Wi implies conditional
random assignment conditional on e(Wi ).

Suggests another route: estimate the propensity score e(Wi ), then throw
away the covariates Wi and proceed using only the estimated propensity
score in our analysis.
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Inverse Propensity Score Weighting

Relies on following result:

E [
TiYi

e(Wi )
] = E [Yi (1)] and E [

(1− Ti )Yi

1− e(Wi )
] = Yi (0).

We’ll show first equality:

E [
TiYi

e(Wi )
] = E [

TiYi (1)

e(Wi )
]

= E [E [
TiYi (1)

e(Wi )
|Wi ]]

= E [E [
e(Wi )Yi (1)

e(Wi )
]] = E [Yi (1)].
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Inverse Propensity Score Weighting

Follows that ATE can be written as

ATE = E [
TiYi

e(Wi )
− (1− Ti )Yi

1− e(Wi )
].

If propensity score is known exactly, a valid estimator is

ˆATE =
1
N

N∑
i=1

TiYi

e(Wi )
− (1− Ti )Yi

1− e(Wi )
.

Of course it must be estimated...
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IV Model – Treatment Effect Heterogeneity

We’ll now present the IV model with heterogeneous treatment effects.
Then, we will place sufficient restrictions on the treatment effect
heterogeneity so that the IV estimator will deliver an ATE.

Assume that treatment Ti is not randomly assigned but there is an
instrument Si that is randomly assigned and correlated with Ti .

For each individual i , there is a potential treatment function Ti (·) that can
be evaluated at any s ∈ S. Ti (s) is the treatment realized for individual i
at instrument level s. We observe

Ti = Ti (Si ).

For each individual i , there is a potential outcome function Yi (·, ·) that can
be evaluated at any level of the treatment and subsidy. We observe

Yi (Ti , Si )
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IV Model – Treatment Effect Heterogeneity

We make two key assumptions:
(1) Exclusion restriction:

Yi (t, s1) = Yi (t, s2) ∀s1, s2 ∈ S.

(2) Random assignment of instrument:

{{Yi (t), t ∈ T }, {Ti (s), s ∈ S}} ⊥⊥ Si .
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IV Model – Constant Treatment Effects

Suppose that Ti ∈ {0, 1}, Si ∈ {0, 1} and that the treatment effects are
constant:

Yi (1) = Yi (0) + K

for all i . Then, the IV estimator identifies ATE = K . See the notes for the
derivation.

Next time – we’ll consider what the IV estimator identifies when we do not
restrict the heterogeneity of the treatment effects.
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IV Bounds on ATE
Under the IV assumptions, we can derive bounds on the ATE without
treatment effect homogeneity assumptions. Suppose again that Y ∈ [0, 1].

We have that

E [Y (1)] = E [Y (1)|Z = z ]

= E [Y (1)|Z = z ,T = 1]P(T = 1|Z = z)

+ E [Y (0)|Z = z ,T = 0]P(T = 0|Z = z)

≤ E [Y (1)|Z = z ,T = 1]P(T = 1|Z = z) + P(T = 0|Z = z)

This holds for all z ∈ Z. So, an upper-bound is

E [Y (1)] ≤ min
z

E [Y (1)|Z = z ,T = 1]P(T = 1|Z = z) + P(T = 0|Z = z).

Similarly, a lower bound is

max
z

E [Y (1)|Z = z ,T = 1]P(T = 1|Z = z) ≤ E [Y (1)].

Great Practice Q: Work out the IV bounds on ATE for a binary
instrument, Z = {0, 1} – this is a very simple calculation.
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