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IV Model – Treatment Effect Heterogeneity

We’ll now present the IV model with heterogeneous treatment effects.
Then, we will place sufficient restrictions on the treatment effect
heterogeneity so that the IV estimator will deliver an ATE.

Assume that treatment Ti is not randomly assigned but there is an
instrument Si that is randomly assigned and correlated with Ti .

For each individual i , there is a potential treatment function Ti (·) that can
be evaluated at any s ∈ S. Ti (s) is the treatment realized for individual i
at instrument level s. We observe

Ti = Ti (Si ).

For each individual i , there is a potential outcome function Yi (·, ·) that can
be evaluated at any level of the treatment and subsidy. We observe

Yi (Ti , Si )
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IV Model – Treatment Effect Heterogeneity

We make two key assumptions:
(1) Exclusion restriction:

Yi (t, s1) = Yi (t, s2) ∀s1, s2 ∈ S.

(2) Random assignment of instrument:

{{Yi (t), t ∈ T }, {Ti (s), s ∈ S}} ⊥⊥ Si .
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IV Model – Constant Treatment Effects

Suppose that Ti ∈ {0, 1}, Si ∈ {0, 1} and that the treatment effects are
constant:

Yi (1) = Yi (0) + K

for all i . Then, the IV estimator identifies ATE = K . See the notes for the
derivation.

Next time – we’ll consider what the IV estimator identifies when we do not
restrict the heterogeneity of the treatment effects.
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IV Bounds on ATE
Under the IV assumptions, we can derive bounds on the ATE without
treatment effect homogeneity assumptions. Suppose again that Y ∈ [0, 1].

We have that

E [Y (1)] = E [Y (1)|Z = z ]

= E [Y (1)|Z = z ,T = 1]P(T = 1|Z = z)

+ E [Y (0)|Z = z ,T = 0]P(T = 0|Z = z)

≤ E [Y (1)|Z = z ,T = 1]P(T = 1|Z = z) + P(T = 0|Z = z)

This holds for all z ∈ Z. So, an upper-bound is

E [Y (1)] ≤ min
z

E [Y (1)|Z = z ,T = 1]P(T = 1|Z = z) + P(T = 0|Z = z).

Similarly, a lower bound is

max
z

E [Y (1)|Z = z ,T = 1]P(T = 1|Z = z) ≤ E [Y (1)].

Great Practice Q: Work out the IV bounds on ATE for a binary
instrument, Z = {0, 1} – this is a very simple calculation.
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Selection Bias

Let Ti ∈ {0, 1} and Si ∈ S. Define the potential outcome function, Y (t, s)
and impose the exclusion restriction

Y (t, s1)
d
= Y (t, s2) s1, s2 ∈ S.

So, we write Y (t) from now on.

Define

E [Yi (1)] = α1, Ui1 = Yi1 − E [Yi (1)]
E [Y (0)] = α0, Ui0 = Yi0 − E [Yi (0)],

where β = E [Yi (1)− Yi (0)]. So, we write

Yi (0) = α0 + Ui0

Yi (1) = α1 + Ui1.
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Selection Bias
Selection bias arises if Ti is correlated with the potential outcomes. We’ll
model this with a selection equation

Ti = 1{Vi ≤ g(Si )}, Vi ⊥⊥ Si .

We assume that Si = (Si1, . . . ,SiJ)
′ and assume g : RJ → [0, 1]. g is

completely unrestricted and so, it is a normalization (observationally
equivalent) to assume that

Vi |Si = s ∼ U[0, 1].

It’s immediate that

P(Ti = 1|Si = s) = g(s).

This is known as a threshold crossing model or a latent index model.
There are two key restrictions here:

(1) Vi ⊥⊥ Si .
(2) Vi ,Si enter in an additively separable way.
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Selection Bias

Let’s see how selection bias arises. We have

Yi = Yi (Ti )

= Yi (0) + Ti{Yi (1)− Yi (0)}
= α0 + Tiβ + {Ui0 + Ti (Ui1 − Ui0)}.

Then,

E [Yi |Ti ] = α0 + Tiβ + E [Ui0|Ti ] + TiE [Ui1 − Ui0|Ti ]

and the predictive effect is

E [Yi |Ti = 1]− E [Yi |Ti = 0] = β + E [Ui1|Ti = 1]− E [Ui0|Ti = 0].

Selection bias arises if Ti is correlated with either Ui1,Ui0.
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Random assignment of the instrument

Suppose that

{Yi (0),Yi (1),Vi} ⊥⊥ Si .

Consider the reduced form expectations. First,

E [Ti |Si = s] = P(Ti = 1|Si = s) = g(s).

Next,

E [Yi |Si = s] = E [α0 + Tiβ + {Ui0 + Ti (Ui1 − Ui0)}]
= α0 + g(s)β + E [Ti (Ui1 − Ui0)|Si = s],
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Random assignment of the instrument

Continuing, we have that

E [Ti (Ui1 − Ui0)|Si = s] = E [E [Ti (Ui1 − Ui0)|Si = s,Vi ]|Si = s]

= E [1{Vi ≤ g(s)}E [Ui1 − Ui0|Vi ]|Si = s]

=

∫ 1

0
1{v ≤ g(s)}E [Ui1 − Ui0|Vi = v ]dv

=

∫ g(s)

0
E [Ui1 − Ui0|Vi = v ]dv

So, under random assignment of the instrument, we have that

E [Ti |Si = s] = g(s)

E [Yi |Si = s] = α0 + g(s)β +

∫ g(s)

0
E [Ui1 − Ui0|Vi = v ]dv .
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Marginal treatment effects

Suppose that E [Ui1 − Ui0|Vi ] 6= 0 – that is, the latent Vi is correlated with
the individual gains from treatment. In other words, there is selection into
the treatment based on individual gains. The marginal treatment effect
is defined as

MTE (v) = E [Yi (1)− Yi (0)|Vi ]

= β + E [Ui1 − Ui0|Vi = v ].

This is the ATE for the subpopulation with Vi = v . This sub-population is
marginal meaning that their treatment status will change for a small
change in the subsidy that has g(s) go from just below to just above v .

By iterated expectations, we can relate MTE to ATE:

ATE = E [E [Yi (1)− Yi (0)|Vi ]] = E [MTE (Vi )].
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Marginal treatment effects

Recall: In the simple linear IV case, the Wald estimator returned the ratio
of the reduced form slopes. So, let’s look at something similar here.

Claim:

∂E [Yi |Si=s]
∂sj

∂E [Ti |Si=s]
∂sj

= MTE (g(s)) j = 1, . . . , J.

Proof : We have

∂E [Yi |Si = s]

∂sj
=
∂g(s)

∂sj
β + E [Ui1 − Ui0|Vi = g(s)]

∂g(s)

∂sj
∂E [Ti |Si = s]

∂sj
=
∂g(s)

∂sj
.

Result is immediate.
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Marginal treatment effects

Consider the case where Si consists of a single, continuous variable.
To apply these results, we need to construct flexible approximations of
the CEFs. We can do this with least squares using flexible basis
functions such as polynomials or some other series. For Ti , we can
nest this inside a logit/probit and use MLE for estimation.
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Arnold, Dobbie & Yang (2018): Figure (2)
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LATE

Now suppose that the instrument only takes two values, s = a, s = b.
For example, suppose that in an RCT, you only randomize ITT (e.g.
Moving to Opportunity).

Suppose that the instrument is relevant: E [Ti |Si = a] 6= E [Ti |Si = b] and
WLOG, assume g(a) < g(b).

Before we looked at a ratio of derivatives. Here the analogue is a ratio of
differences

E [Yi |Si = b] = E [Yi |Si = a]

E [Ti |Si = b] = E [Ti |Si = a]
= β +

1
g(b)− g(a)

∫ g(b)

g(a)
E [Ui1 − Ui0|Vi = v ]dv

= β + E [Ui1 − Ui0|g(a) ≤ Vi ≤ g(b)]

= E [Yi (1)− Yi (0)|g(a) ≤ Vi ≤ g(b)]

= LATE .
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LATE and Monotonicity

Imbens & Angrist (1994): The ratio of differences is the Wald Estimator
for a binary instrument. Going to switch and set b = 1, a = 0. We have

Cov(Si ,Yi ) = E [SiYi ]− E [Si ]E [Yi ]

= E [Yi |Si = 1]E [Si ]
− (E [Yi |Si = 1]E [Si ] + E [Yi |Si = 0]E [1− Si ])E [Si ]

= (E [Yi |Si = 1]− E [Yi |Si = 0])E [Si ]E [1− Si ].

Next, by a similar argument,

Cov(Si ,Ti ) = (E [Ti |Si = 1]− E [Ti |Si = 0])E [Si ]E [1− Si ].

So,

Cov(Si ,Yi )

Cov(Si ,Ti )
=

E [Yi |Si = 1]− E [Yi |Si = 0]
E [Ti |Si = 1]− E [Ti |Si = 0]

.
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LATE and Monotonicity

Recall: We also defined a potential treatment function, Ti (s) and the
instrument being randomly assigned now means

{Yi (0),Yi (1),Ti (),Ti (1)} ⊥⊥ Si .

The instrument also satisfies the exclusion restriction. Consider the
numerator of the Wald estimator. We have

E [Yi |Si = 1]− E [Yi |Si = 0]
= E [Yi (1)Ti (1) + Yi (0)(1− Ti (1))]
− E [Yi (1)Ti (0) + Yi (0)(1− Ti (0))]
= E [(Ti (1)− Ti (0))(Yi (1)− Yi (0))]
= P(Ti (1)− Ti (0) = 1)E [(Yi (1)− Yi (0))|Ti (1)− Ti (0) = 1]
− P(Ti (1)− Ti (0) = −1)E [(Yi (1)− Yi (0))|Ti (1)− Ti (0) = −1]
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LATE and Monotonicity

Next, we have that

E [Ti |Si = 1]− E [Ti |Si = 0] = E [Ti (1)− Ti (0)]
= P(Ti − Ti (0) = 1)− P(Ti − Ti (0) = −1).

So, even if Yi (1)− Yi (0) > 0 w.p. 1, we can have that

E [Yi |Si = 1]− E [Yi |Si = 0]
E [Ti |Si = 1]− E [Ti |Si = 0]

< 0.

Without additional assumptions, the Wald Estimator does not identify an
average treatment effect for any sub-population!
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LATE and Monotonicity
Imbens & Angrist (1994): Introduce monotonicity assumption.

P(Ti (1) ≥ Ti (0)) = 1 or P(Ti (1) ≤ Ti (0)) = 1.

In other words, “one-sided non-compliance.” In other other words, “no
defiers” – population only consists of

Never-takers: Ti (0) = Ti (1) = 0
Always-takers: Ti (1) = Ti (0) = 1
Compliers: Ti (1) = 1,Ti (0) = 0

The Wald Estimator identifies an ATE for the compliers.

Under monotonicity, the Wald Estimator simplifies to

E [Yi |Si = 1]− E [Yi |Si = 0]
E [Ti |Si = 1]− E [Ti |Si = 0]

= E [Yi (1)− Yi (0)|Ti (1)− Ti (0) = 1]

= LATE .
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Monotonicity and Choice Model

Vytlacil (2002): Monotonicity is equivalent to the threshold crossing
model we presented at the beginning.

The keys in the choice model are: (1) Additive separability of Si ,Vi

and (2) Vi ⊥⊥ Si .
See lecture notes for proof.

In other words, monotonicity is equivalent to assuming a particular choice
model for selection into treatment. If you’re uncomfortable with the choice
model, you are uncomfortable with monotonicity and vice versa.
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