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Orthogonality Conditions

Goal of first half of the class: Get you to think in terms of
projections.

Best Linear Predictor: Projection onto space of linear
functions of X
Conditional expectation: Projection onto space of all linear
functions of X

Key: There is a “one-to-one” map between the projection problem
and the orthogonality condition.



Orthogonality Conditions

We can always (trivially) write

Y = g(X ) + U, U = Y − g(X ).

To understand what g(X ) describes, you just need to know the
orthogonality condition that U satisfies.

Two cases:
(1): g(X ) = β0 + β1X and E [U] = E [U · X ] = 0

=⇒ g(X ) is the best linear predictor.
(2): E [U · h(X )] = 0 for all h(·).

=⇒ g(X ) = E [Y |X ].



Orthogonality Conditions

Why is this useful?
If you can transform your minimization problem e.g.

min
β0,β1

E [(Y − β0 − β1X )2]

into a projection problem,

min
β0,β1
‖Y − β0 − β1X‖2,

you have a whole new set of (very) useful tools.
By the projection theorem, we can characterize the solution by
a set of orthogonality conditions AND we have uniqueness.



Best Linear Predictor

Why are we emphasizing the best linear predictor E ∗[Y |X ] so
much?

In some sense, it can “always be computed.”
Requires very few assumptions aside from the existence of
second moments of the joint distribution.
You can always go to Stata, type reg y x and get something
that has the interpretation of a best linear predictor.

Regression output = estimated coefficients of best linear
predictor.

BUT: It is a completely separate question if this is an “interesting”
interpretation.

To say more, you need to assume more.
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Linear Predictor

X = (X1, . . . ,XK )
′ is a K × 1 vector, β = (β1, . . . , βK )

′ is the
K × 1 vector of coefficients of the best linear predictor. Coefficients
characterized by K orthogonality conditions

E [(Y − X ′β)Xj ] = E [Xj(Y − X ′β)] = 0 for j = 1, . . . ,K .

Re-write in vector form to get

E [ X
K×1

(Y − X ′β)
1×1

] = 0.

This is a K × 1 system of linear equations.

Provided E [XX ′] is non-singular,

E [XY ]
K×1

− E [XX ′]
K×K

β
K×1

= 0 =⇒ β
K×1

= E [XX ′]−1

K×K
E [XY ]
K×1

.
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Least Squares

Data are (yi , xi1, . . . , xiK ) for i = 1, . . . , n. x ′i = (xi1, . . . , xiK ) is
the 1× K vector of covariates for the i-th observation and
x j = (x1j , . . . , xnj)

′ be the n × 1 vector of observations of the j-th
covariate.

Define

y
n×1

=

y1
...
yn

 , b
K×1

=

b1
...
bk

 , x
n×K

=

x ′1
...
x ′n

 =
(
x1 . . . xK

)
.

n × K matrix x is sometimes referred to as the design matrix.
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Least Squares
Least-squares coefficients bj defined by K orthogonality conditions

(x j)′

1×n
(y − xb)

n×1
= 0 for j = 1, . . . ,K .

Stack these orthogonality conditions to get (x1)′

...
(xK )′


K×n

(y − xb)
n×1

= x ′
K×n

(y − xb)
n×1

= 0

Produces K × 1 system of linear equations.

Provided x ′x
K×K

non-singular,

b
K×1

= (x ′x)−1

K×K
x ′y
K×1
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Least Squares

Can show (just algebra)

x ′x =
n∑

i=1

xix
′
i , x ′y =

n∑
i=1

xiyi .

Can also write the least-squares coefficients as

b =
( n∑

i=1

xix
′
i

)−1( n∑
i=1

xiyi

)
=
(1
n

n∑
i=1

xix
′
i

)−1(1
n

n∑
i=1

xiyi

)
.

This formula is extremely useful when we discuss asymptotics.
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OVB formula (again)

Short linear predictor of Y :

E ∗[Y |X1, . . . ,XK−1] = α1X1 + . . .+ αK−1XK−1,

Long linear predictor of Y

E ∗[Y |X1, . . . ,XK ] = β1X1 + . . .+ βKXK

Auxiliary linear predictor of XK

E ∗[XK |X1, . . . ,XK−1] = γ1X1 + . . .+ γK−1XK−1.
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OVB formula (again)

Let
X̃K = XK − γ1X1 − . . .− γK−1XK−1.

So
XK = γ1X1 + . . .+ γK−1XK−1 + X̃K ,

Y = β̃1X1 + . . .+ β̃K−1XK−1 + βK X̃K + U

where U = Y − E ∗[Y |X1, . . . ,XK ] and β̃j = βj + γjβK for
j = 1, . . . ,K − 1.
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OVB formula (again)

Note that

〈Y − β̃1X1 − . . .− β̃K−1XK−1,Xj〉 = 〈βK X̃K + U,Xj〉 = 0

for j = 1, . . . ,K − 1.

These are the same orthogonality conditions of the short linear
predictor. So

αj = βj + γjβK

for j = 1, . . . ,K − 1.
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Residual Regression

Very useful trick that is used all the time.

Consider best linear predictor with K covariates

E ∗[Y |X1, . . . ,XK ] = β1X1 + . . .+ βKXK .

Focus on βK . Is there simple closed-form expression for βK?

Yes! Use residual regression.
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Residual Regression

Auxiliary linear predictor of XK given X1, . . . ,XK−1. Denote this
as

E ∗[XK |X1, . . . ,XK−1] = γ1X1 + . . .+ γK−1XK−1

Associated residual is

X̃K = XK − γ1X1 − . . . γK−1XK−1.

Theorem (Residual Regression)
βK can be written as

βK =
E [Y X̃K ]

E [X̃ 2
K ]

.
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Residual Regression: proof

By definition,

XK = γ1X1 + . . .+ γK−1XK−1 + X̃K .

Substitute into E ∗[Y |X1, . . . ,Xk ] to get

E ∗[Y |X1, . . . ,XK ] = β̃1X1 + . . .+ β̃K−1XK−1 + βK X̃K

where
β̃j = βj + γjβK for j = 1, . . . ,K − 1.
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Residual Regression: proof

X̃K is a linear combination of X1, . . . ,XK . So, it is orthogonal to
the residual Y − E ∗[Y |X1, . . . ,XK ].

⇒ 〈Y − β̃1X1 − . . .− β̃K−1XK−1 − βK X̃K , X̃K 〉 = 0.

X̃K is orthogonal to X1, . . . ,XK−1. Above simplifies to

〈Y − βK X̃K , X̃K 〉 = 0

and so,

βK =
E [Y X̃K ]

E [X̃ 2
K ]

.
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Residual Regression: intuition

Coefficient βK on XK is the coefficient of the best linear predictor
of Y given the residuals of XK .

If the conditional expectation is linear, βK is the "partial
effect" of XK on Y holding all else constant.



Exercise 1

Consider the long and short predictors in the population:

E ∗[Y |1,X1,X2,X3] = β0 + β1X1 + β2X2 + β3X3

E ∗[Y |1,X1,X2] = α0 + α1X1 + α2X2

(1) Provide a formula relating α2 and β2.

(2) Suppose that X3 is uncorrelated to X1 and X2. Does α2 = β2?

(3): Suppose that

Cov(X2,X3) = 0, Cov(X1,X3) 6= 0, Cov(X1,X2) 6= 0.

Does α2 = β2?
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Exercise 2
The partial covariance between the random variables Y ,XK given
X1, . . . ,XK−1 is

Cov∗(Y ,XK |X1, . . . ,XK−1) = E [Ỹ X̃K ]

where

Ỹ = Y − E ∗[Y |X1, . . . ,XK−1]

X̃K = XK − E ∗[XK |X1, . . . ,XK−1].

The partial variance of Y is

V ∗(Y |X1, . . . ,XK−1) = E [Ỹ 2]

. The partial correlation between Y ,XK is

Cor∗(Y ,XK |X1, . . . ,XK−1) =
E [Ỹ X̃K ]

(E [Ỹ ]E [X̃K ])1/2
.



Exercise 2 (continued)

(1): Consider the linear predictor

E ∗[Y |1,X1, . . . ,XK ] = β0 + β1X1 + . . .+ βKXK .

Use our residual regression results to show that

βK =
Cov∗(Y ,XK |1,X1, . . . ,XK−1)

V ∗(XK |1,X1, . . . ,XK−1)
.



Residual Regression: sample analog

Consider the least-squares fit using K covariates

ŷi = yi |x1, . . . , xK = b1xi1 + . . .+ bKxiK .

Following a similar argument, can show that bK is the coefficient of
the least-squares fit of y on x̃k , the vector of residuals given by

x̃iK = xiK − xiK |x1, . . . , xK−1.

That is, bK can be written as

bK =
1
n

∑n
i=1 yi x̃iK

1
n

∑n
i=1 x̃

2
iK

.



Frisch-Waugh-Lovell Theorem

Residual regression is typically known as the Frisch-Waugh-Lovell
Theorem.

Interested in regression

Y = X1β1 + X2β2 + u,

where Y is an n × 1 vector, X1 is an n × K1 matrix, X2 is an
n × K2 matrix and u is an n × 1 vector of residuals.

⇒ How can we write the least squares coefficients in β2?
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Frisch-Waugh-Lovell Theorem

Same as the estimate in the modified regression

MX1Y = MX1X2β2 +MX1u

where MX1 is the orthogonal complement of the projection matrix
X1(X

′
1X1)

−1X1.

MX1 = I − X1(X
′
1X1)

−1X ′1

It projects onto the orthogonal complement of the space spanned
by the columns of X1.

⇒ β2 can be written as the coefficient in the regression of residuals
of Y on residuals of X2.
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Useful Trick - Orthogonal Decomposition

Notice we used the same trick in OVB and residual regression
results.

Decomposed variable into two pieces - one piece that lives in
“simple” space and another that is orthogonal to this “simple”
space.



Useful Trick - Orthogonal Decomposition

Example: random variable Y , decompose it into

Y = E [Y |X ] + (Y − E [Y |X ])︸ ︷︷ ︸
U

.

E [Y |X ] lives on the space of functions of X only and U is
orthogonal to any function of X .

Example: random variable Y , decompose it into

Y = E ∗ [Y |X1, . . . ,XK ] + (Y − E ∗[Y |X1, . . . ,XK ])︸ ︷︷ ︸
V

.

E ∗[Y |X1, . . . ,XK ] lives on the space of linear functions of
X1, . . . ,XK only and V is orthogonal to any linear function of
X1, . . . ,XK .
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