Econ 2120: Section 2

Part I - Linear Predictor Loose Ends

Ashesh Rambachan

Fall 2018

Outline

Big Picture

Matrix Version of the Linear Predictor and Least Squares Fit Linear Predictor Least Squares Omitted Variable Bias Formula

Residual Regression

Useful Trick

Outline

Big Picture

Matrix Version of the Linear Predictor and Least Squares Fit
Linear Predictor
Least Squares
Omitted Variable Rias Formula

Residual Regression

Useful Trick

Orthogonality Conditions

Goal of first half of the class: Get you to think in terms of projections.

Best Linear Predictor: Projection onto space of linear functions of X

Conditional expectation: Projection onto space of all linear functions of X

Key: There is a "one-to-one" map between the projection problem and the orthogonality condition.

Orthogonality Conditions

We can always (trivially) write

$$Y = g(X) + U$$
, $U = Y - g(X)$.

To understand what g(X) describes, you **just** need to know the orthogonality condition that U satisfies.

Two cases:

(1):
$$g(X) = \beta_0 + \beta_1 X$$
 and $E[U] = E[U \cdot X] = 0$
 $\implies g(X)$ is the best linear predictor.

(2):
$$E[U \cdot h(X)] = 0$$
 for all $h(\cdot)$.
 $\implies g(X) = E[Y|X]$.

Orthogonality Conditions

Why is this useful?

If you can transform your minimization problem e.g.

$$\min_{\beta_0,\beta_1} E[(Y - \beta_0 - \beta_1 X)^2]$$

into a projection problem,

$$\min_{\beta_0,\beta_1} \| Y - \beta_0 - \beta_1 X \|^2,$$

you have a whole new set of (very) useful tools.

By the projection theorem, we can characterize the solution by a set of orthogonality conditions AND we have uniqueness.

Best Linear Predictor

Why are we emphasizing the best linear predictor $E^*[Y|X]$ so much?

Best Linear Predictor

Why are we emphasizing the best linear predictor $E^*[Y|X]$ so much?

In some sense, it can "always be computed."

Requires very few assumptions aside from the existence of second moments of the joint distribution.

You can always go to Stata, type $reg\ y\ x$ and get something that has the interpretation of a best linear predictor.

Regression output = estimated coefficients of best linear predictor.

Best Linear Predictor

Why are we emphasizing the best linear predictor $E^*[Y|X]$ so much?

In some sense, it can "always be computed."

Requires very few assumptions aside from the existence of second moments of the joint distribution.

You can always go to Stata, type $reg\ y\ x$ and get something that has the interpretation of a best linear predictor.

Regression output = estimated coefficients of best linear predictor.

BUT: It is a completely separate question if this is an "interesting" interpretation.

To say more, you need to assume more.

Outline

Big Picture

Matrix Version of the Linear Predictor and Least Squares Fit

Linear Predictor

Least Squares

Omitted Variable Bias Formula

Residual Regression

Useful Trick

Linear Predictor

 $X=(X_1,\ldots,X_K)'$ is a $K\times 1$ vector, $\beta=(\beta_1,\ldots,\beta_K)'$ is the $K\times 1$ vector of coefficients of the best linear predictor. Coefficients characterized by K orthogonality conditions

$$E[(Y-X'\beta)X_j] = E[X_j(Y-X'\beta)] = 0$$
 for $j = 1, \dots, K$.

Linear Predictor

 $X=(X_1,\ldots,X_K)'$ is a $K\times 1$ vector, $\beta=(\beta_1,\ldots,\beta_K)'$ is the $K\times 1$ vector of coefficients of the best linear predictor. Coefficients characterized by K orthogonality conditions

$$E[(Y - X'\beta)X_j] = E[X_j(Y - X'\beta)] = 0 \quad \text{for} \quad j = 1, \dots, K.$$

Re-write in vector form to get

$$E[\underset{K\times 1}{X}(Y-X'\beta)]=0.$$

This is a $K \times 1$ system of linear equations.

Linear Predictor

 $X=(X_1,\ldots,X_K)'$ is a $K\times 1$ vector, $\beta=(\beta_1,\ldots,\beta_K)'$ is the $K\times 1$ vector of coefficients of the best linear predictor. Coefficients characterized by K orthogonality conditions

$$E[(Y - X'\beta)X_j] = E[X_j(Y - X'\beta)] = 0 \quad \text{for} \quad j = 1, \dots, K.$$

Re-write in vector form to get

$$E[\underset{K\times 1}{X}(Y-X'\beta)]=0.$$

This is a $K \times 1$ system of linear equations.

Provided E[XX'] is non-singular,

$$E[XY] - E[XX'] \beta_{K \times K} = 0 \implies \beta_{K \times 1} = E[XX']^{-1} E[XY].$$

Data are $(y_i, x_{i1}, \ldots, x_{iK})$ for $i = 1, \ldots, n$. $x_i' = (x_{i1}, \ldots, x_{iK})$ is the $1 \times K$ vector of covariates for the i-th observation and $x^j = (x_{1j}, \ldots, x_{nj})'$ be the $n \times 1$ vector of observations of the j-th covariate.

Data are $(y_i, x_{i1}, \ldots, x_{iK})$ for $i = 1, \ldots, n$. $x_i' = (x_{i1}, \ldots, x_{iK})$ is the $1 \times K$ vector of covariates for the i-th observation and $x^j = (x_{1j}, \ldots, x_{nj})'$ be the $n \times 1$ vector of observations of the j-th covariate.

Define

$$y_{n\times 1} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad b_{K\times 1} = \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix}, \quad x_{n\times K} = \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = \begin{pmatrix} x^1 & \dots & x^K \end{pmatrix}.$$

 $n \times K$ matrix x is sometimes referred to as the **design matrix**.

Least-squares coefficients b_j defined by K orthogonality conditions

$$(x^j)'(y-xb)=0$$
 for $j=1,\ldots,K$.

Least-squares coefficients b_j defined by K orthogonality conditions

$$(x^j)'(y-xb)=0$$
 for $j=1,\ldots,K$.

Stack these orthogonality conditions to get

$$\begin{pmatrix} (x^{1})' \\ \vdots \\ (x^{K})' \end{pmatrix} (y - xb) = \underset{K \times n}{x'} (y - xb) = 0$$

$$\underset{K \times n}{x'} (y - xb) = 0$$

Produces $K \times 1$ system of linear equations.

Least-squares coefficients b_j defined by K orthogonality conditions

$$(x^j)'(y-xb)=0$$
 for $j=1,\ldots,K$.

Stack these orthogonality conditions to get

$$\begin{pmatrix} (x^{1})' \\ \vdots \\ (x^{K})' \end{pmatrix} (y - xb) = \underset{K \times n}{x'} (y - xb) = 0$$

$$\underset{K \times n}{x'} (y - xb) = 0$$

Produces $K \times 1$ system of linear equations.

Provided $\underset{K \times K}{x'x}$ non-singular,

$$b_{K\times 1} = (x'x)^{-1}x'y.$$

Can show (just algebra)

$$x'x = \sum_{i=1}^{n} x_i x_i', \quad x'y = \sum_{i=1}^{n} x_i y_i.$$

Can show (just algebra)

$$x'x = \sum_{i=1}^{n} x_i x_i', \quad x'y = \sum_{i=1}^{n} x_i y_i.$$

Can also write the least-squares coefficients as

$$b = \left(\sum_{i=1}^{n} x_i x_i'\right)^{-1} \left(\sum_{i=1}^{n} x_i y_i\right) = \left(\frac{1}{n} \sum_{i=1}^{n} x_i x_i'\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} x_i y_i\right).$$

This formula is extremely useful when we discuss asymptotics.

Short linear predictor of *Y*:

$$E^*[Y|X_1,...,X_{K-1}] = \alpha_1 X_1 + ... + \alpha_{K-1} X_{K-1},$$

Short linear predictor of *Y*:

$$E^*[Y|X_1,...,X_{K-1}] = \alpha_1 X_1 + ... + \alpha_{K-1} X_{K-1},$$

Long linear predictor of Y

$$E^*[Y|X_1,\ldots,X_K] = \beta_1 X_1 + \ldots + \beta_K X_K$$

Short linear predictor of *Y*:

$$E^*[Y|X_1,\ldots,X_{K-1}] = \alpha_1 X_1 + \ldots + \alpha_{K-1} X_{K-1},$$

Long linear predictor of *Y*

$$E^*[Y|X_1,\ldots,X_K] = \beta_1 X_1 + \ldots + \beta_K X_K$$

Auxiliary linear predictor of X_K

$$E^*[X_K|X_1,\ldots,X_{K-1}] = \gamma_1X_1 + \ldots + \gamma_{K-1}X_{K-1}.$$

Let

$$\tilde{X}_{K} = X_{K} - \gamma_{1}X_{1} - \ldots - \gamma_{K-1}X_{K-1}.$$

Let

$$\tilde{X}_K = X_K - \gamma_1 X_1 - \ldots - \gamma_{K-1} X_{K-1}.$$

So

$$X_{K} = \gamma_{1}X_{1} + \ldots + \gamma_{K-1}X_{K-1} + \tilde{X}_{K},$$

$$Y = \tilde{\beta}_{1}X_{1} + \ldots + \tilde{\beta}_{K-1}X_{K-1} + \beta_{K}\tilde{X}_{K} + U$$

where $U = Y - E^*[Y|X_1, ..., X_K]$ and $\tilde{\beta}_j = \beta_j + \gamma_j \beta_K$ for j = 1, ..., K - 1.

Note that

$$\langle Y - \tilde{\beta}_1 X_1 - \ldots - \tilde{\beta}_{K-1} X_{K-1}, X_j \rangle = \langle \beta_K \tilde{X}_K + U, X_j \rangle = 0$$
 for $j = 1, \ldots, K-1$.

Note that

$$\langle Y - \tilde{\beta}_1 X_1 - \ldots - \tilde{\beta}_{K-1} X_{K-1}, X_j \rangle = \langle \beta_K \tilde{X}_K + U, X_j \rangle = 0$$

for j = 1, ..., K - 1.

These are the same orthogonality conditions of the short linear predictor. So

$$\alpha_j = \beta_j + \gamma_j \beta_K$$

for j = 1, ..., K - 1.

Outline

Big Picture

Matrix Version of the Linear Predictor and Least Squares Fit

Linear Predictor

Least Squares

Omitted Variable Bias Formula

Residual Regression

Useful Trick

Very useful trick that is used all the time.

Consider best linear predictor with K covariates

$$E^*[Y|X_1,\ldots,X_K] = \beta_1 X_1 + \ldots + \beta_K X_K.$$

Focus on β_K . Is there simple closed-form expression for β_K ?

Very useful trick that is used all the time.

Consider best linear predictor with K covariates

$$E^*[Y|X_1,\ldots,X_K] = \beta_1 X_1 + \ldots + \beta_K X_K.$$

Focus on β_K . Is there simple closed-form expression for β_K ? Yes! Use **residual regression**.

Auxiliary linear predictor of X_K given X_1, \ldots, X_{K-1} . Denote this as

$$E^*[X_K|X_1,\ldots,X_{K-1}] = \gamma_1 X_1 + \ldots + \gamma_{K-1} X_{K-1}$$

Associated residual is

$$\tilde{X}_K = X_K - \gamma_1 X_1 - \dots \gamma_{K-1} X_{K-1}.$$

Auxiliary linear predictor of X_K given X_1, \ldots, X_{K-1} . Denote this as

$$E^*[X_K|X_1,\ldots,X_{K-1}] = \gamma_1 X_1 + \ldots + \gamma_{K-1} X_{K-1}$$

Associated residual is

$$\tilde{X}_K = X_K - \gamma_1 X_1 - \dots \gamma_{K-1} X_{K-1}.$$

Theorem (Residual Regression)

 β_K can be written as

$$\beta_K = \frac{E[Y\tilde{X}_K]}{E[\tilde{X}_K^2]}.$$

By definition,

$$X_K = \gamma_1 X_1 + \ldots + \gamma_{K-1} X_{K-1} + \tilde{X}_K.$$

By definition,

$$X_K = \gamma_1 X_1 + \ldots + \gamma_{K-1} X_{K-1} + \tilde{X}_K.$$

Substitute into $E^*[Y|X_1,\ldots,X_k]$ to get

$$E^*[Y|X_1,\ldots,X_K] = \tilde{\beta}_1 X_1 + \ldots + \tilde{\beta}_{K-1} X_{K-1} + \beta_K \tilde{X}_K$$

where

$$\tilde{\beta}_j = \beta_j + \gamma_j \beta_K$$
 for $j = 1, \dots, K - 1$.

 \tilde{X}_K is a linear combination of X_1, \ldots, X_K . So, it is orthogonal to the residual $Y - E^*[Y|X_1, \ldots, X_K]$.

$$\Rightarrow \langle Y - \tilde{\beta}_1 X_1 - \ldots - \tilde{\beta}_{K-1} X_{K-1} - \beta_K \tilde{X}_K, \tilde{X}_K \rangle = 0.$$

 \tilde{X}_K is a linear combination of X_1,\ldots,X_K . So, it is orthogonal to the residual $Y-E^*[Y|X_1,\ldots,X_K]$.

$$\Rightarrow \langle Y - \tilde{\beta}_1 X_1 - \ldots - \tilde{\beta}_{K-1} X_{K-1} - \beta_K \tilde{X}_K, \tilde{X}_K \rangle = 0.$$

 $ilde{X}_K$ is orthogonal to X_1,\ldots,X_{K-1} . Above simplifies to

$$\langle Y - \beta_K \tilde{X}_K, \tilde{X}_K \rangle = 0$$

and so,

$$\beta_K = \frac{E[Y\tilde{X}_K]}{E[\tilde{X}_K^2]}.$$

Residual Regression: intuition

Coefficient β_K on X_K is the coefficient of the best linear predictor of Y given the residuals of X_K .

If the conditional expectation is linear, β_K is the "partial effect" of X_K on Y holding all else constant.

Consider the long and short predictors in the population:

$$E^*[Y|1, X_1, X_2, X_3] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$
$$E^*[Y|1, X_1, X_2] = \alpha_0 + \alpha_1 X_1 + \alpha_2 X_2$$

(1) Provide a formula relating α_2 and β_2 .

Consider the long and short predictors in the population:

$$E^*[Y|1, X_1, X_2, X_3] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$
$$E^*[Y|1, X_1, X_2] = \alpha_0 + \alpha_1 X_1 + \alpha_2 X_2$$

- (1) Provide a formula relating α_2 and β_2 .
- (2) Suppose that X_3 is uncorrelated to X_1 and X_2 . Does $\alpha_2 = \beta_2$?

Consider the long and short predictors in the population:

$$E^*[Y|1, X_1, X_2, X_3] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$
$$E^*[Y|1, X_1, X_2] = \alpha_0 + \alpha_1 X_1 + \alpha_2 X_2$$

- (1) Provide a formula relating α_2 and β_2 .
- (2) Suppose that X_3 is uncorrelated to X_1 and X_2 . Does $\alpha_2 = \beta_2$?
- (3): Suppose that

$$Cov(X_2, X_3) = 0$$
, $Cov(X_1, X_3) \neq 0$, $Cov(X_1, X_2) \neq 0$.

Does $\alpha_2 = \beta_2$?

The partial covariance between the random variables Y, X_K given X_1, \dots, X_{K-1} is

$$Cov^*(Y, X_K | X_1, \dots, X_{K-1}) = E[\tilde{Y}\tilde{X}_K]$$

where

$$\tilde{Y} = Y - E^*[Y|X_1, \dots, X_{K-1}]$$

 $\tilde{X}_K = X_K - E^*[X_K|X_1, \dots, X_{K-1}].$

The partial variance of Y is

$$V^*(Y|X_1,\ldots,X_{K-1})=E[\tilde{Y}^2]$$

. The partial correlation between Y, X_K is

$$Cor^*(Y, X_K | X_1, \dots, X_{K-1}) = \frac{E[\tilde{Y}\tilde{X}_K]}{(E[\tilde{Y}]E[\tilde{X}_K])^{1/2}}.$$

Exercise 2 (continued)

(1): Consider the linear predictor

$$E^*[Y|1, X_1, \dots, X_K] = \beta_0 + \beta_1 X_1 + \dots + \beta_K X_K.$$

Use our residual regression results to show that

$$\beta_{K} = \frac{Cov^{*}(Y, X_{K}|1, X_{1}, \dots, X_{K-1})}{V^{*}(X_{K}|1, X_{1}, \dots, X_{K-1})}.$$

Residual Regression: sample analog

Consider the least-squares fit using K covariates

$$\hat{y}_i = y_i | x_1, \dots, x_K = b_1 x_{i1} + \dots + b_K x_{iK}.$$

Following a similar argument, can show that b_K is the coefficient of the least-squares fit of y on \tilde{x}_k , the vector of residuals given by

$$\tilde{x}_{iK} = x_{iK} - x_{iK} | x_1, \dots, x_{K-1}.$$

That is, b_K can be written as

$$b_K = \frac{\frac{1}{n} \sum_{i=1}^n y_i \tilde{x}_{iK}}{\frac{1}{n} \sum_{i=1}^n \tilde{x}_{iK}^2}.$$

Residual regression is typically known as the **Frisch-Waugh-Lovell Theorem**.

Residual regression is typically known as the **Frisch-Waugh-Lovell Theorem**.

Interested in regression

$$Y = X_1 \beta_1 + X_2 \beta_2 + u,$$

where Y is an $n \times 1$ vector, X_1 is an $n \times K_1$ matrix, X_2 is an $n \times K_2$ matrix and u is an $n \times 1$ vector of residuals.

 \Rightarrow How can we write the least squares coefficients in β_2 ?

Same as the estimate in the modified regression

$$M_{X_1}Y = M_{X_1}X_2\beta_2 + M_{X_1}u$$

where M_{X_1} is the orthogonal complement of the projection matrix $X_1(X_1'X_1)^{-1}X_1$.

$$M_{X_1} = I - X_1(X_1'X_1)^{-1}X_1'$$

It projects onto the orthogonal complement of the space spanned by the columns of X_1 .

Same as the estimate in the modified regression

$$M_{X_1}Y = M_{X_1}X_2\beta_2 + M_{X_1}u$$

where M_{X_1} is the orthogonal complement of the projection matrix $X_1(X_1'X_1)^{-1}X_1$.

$$M_{X_1} = I - X_1(X_1'X_1)^{-1}X_1'$$

It projects onto the orthogonal complement of the space spanned by the columns of X_1 .

 $\Rightarrow \beta_2$ can be written as the coefficient in the regression of residuals of Y on residuals of X_2 .

Outline

Big Picture

Matrix Version of the Linear Predictor and Least Squares Fit

Linear Predictor

Least Squares

Omitted Variable Bias Formula

Residual Regression

Useful Trick

Useful Trick - Orthogonal Decomposition

Notice we used the same trick in OVB and residual regression results.

Decomposed variable into two pieces - one piece that lives in "simple" space and another that is orthogonal to this "simple" space.

Useful Trick - Orthogonal Decomposition

Example: random variable *Y*, decompose it into

$$Y = E[Y|X] + \underbrace{\left(Y - E[Y|X]\right)}_{U}.$$

E[Y|X] lives on the space of functions of X only and U is orthogonal to any function of X.

Useful Trick - Orthogonal Decomposition

Example: random variable Y, decompose it into

$$Y = E[Y|X] + \underbrace{(Y - E[Y|X])}_{U}.$$

E[Y|X] lives on the space of functions of X only and U is orthogonal to any function of X.

Example: random variable *Y*, decompose it into

$$Y = E * [Y|X_1, \dots, X_K] + \underbrace{(Y - E^*[Y|X_1, \dots, X_K])}_{V}.$$

 $E^*[Y|X_1,\ldots,X_K]$ lives on the space of linear functions of X_1,\ldots,X_K only and V is orthogonal to any linear function of X_1,\ldots,X_K .