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So far

We have been discussing population properties of the best linear
predictor by considering a single “draw” of data.

We modeled that single draw of data as a random vector
(Y ,X ).

In Elie’s notation, we considered

(Y1, . . . ,YM ,Z1, . . . ,ZL) ∼ F ,

where F is some population distribution



So far

Examples:
(1) M = 1, L = 2: Population of individuals, observe 1
individual randomly drawn and record Y = wage, Z1 = years
of education, Z2 = parental income

(2) M = 2, L = 3: Population of twins, observe 1 pair of twins
randomly drawn and record Y1 = wage of twin 1, Y2 = wage
of twin 2, Z1 = education of twin 1, Z2 = education of twin 2,
Z3 = parental income.
(3) M = T , L = T + 1: Population of individuals, observe 1
individual randomly drawn and record Yt = wage in year t,
Z1t = occupation industry, Z2 = years of education.
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The population distribution, F

The distribution F is unknown.

Assume F belongs to some set of distributions indexed by a
parameter θ ∈ Θ.

P = {Pθ : θ ∈ Θ}, F = Pθ∗

for some θ∗ ∈ Θ.

Jargon:
P is parametric if Θ has finite dimension.
P is non-parametric if Θ is an infinite dimension parameter
space.
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The population distribution, F

Key question: Given data, what statements can we make about
F?

We will begin to explore this question with the population linear
predictor and the least squares estimator?

What can we say about the sampling distribution of the least
squares estimator, Ê ∗[Y |X ]?
How does it relate to the population linear predictor E ∗[Y |X ]?
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A Random Sample

Random sample of size n:
n independent draws from the population F (with
replacement). The i-th draw is

(Yi1, . . . ,YiM ,Zi1, . . . ,ZiL).

The joint distribution of this random vector is F .

Notation for random sample:

Di = (Yi1, . . . ,YiM ,Zi1, . . . ,ZiL)
i .i .d .∼ F for i = 1, . . . , n.
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A Random Sample

Additional notation:

Yi
M×1

=

Yi1
...

YiM

 , Zi
L×1

=

Zi1
...
ZiL


May also write random sample of size n as

(Yi ,Zi )
i .i .d .∼ F for i = 1, . . . , n.

More notation:

Y
n×M

=

Y ′1
...

Y ′M

 , Z
n×L

=

Z ′1
...
Z ′n


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Notation

The linear predictors will use transformations of Z variables

Xik = gk(Zi ) for k = 1, . . . ,K .

Each gk(·) is a known, specified function.
E.g. Zi = age and we transform this into age, age squared,
etc.

As before,

Xi
K×1

=

Xi1
...

XiK

 , X
n×K

=

X ′1
...
X ′n
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Least-squares estimator

Linear predictor:

E ∗[Yi |Xi ] = β1Xi1 + . . .+ βKXiK .

Recall:
β = E [XiX

′
i ]
−1E [XiYi ]

β does not depend on i because (Yi ,Xi ) are i.i.d.

F is unknown and so, need to estimate β. How?
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Least-squares estimator

Natural estimator:

b(Y ,Z ) =
(1
n

n∑
i=1

XiX
′
i

)−1(1
n

n∑
i=1

XiYi

)
= (X ′X )−1X ′Y

Where’s it come from?
(1) Replace expectations with sample averages.
(2) Solve “sample analogue” to minimum mean-square
error/minimum norm problem.



Expectation of Least-Squares Estimator

We wish to compute
E [b(Y ,Z )]

Looks hard...

Iterated expectations to the rescue!

Condition on Z = z . Since X = g(Z ), this fixes X = x .

b(Y ,Z )|Z = z ∼ (x ′x)−1x ′Y |Z = z ,

where x = g(z) is a matrix of fixed numbers.
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Expectation of Least-Squares Estimator

So,
E [b(Y ,Z )|Z = z ] = (x ′x)−1x ′E [Y |Z = z ].

Since each (Yi ,Zi ) independent,

E [Yi |Z = z ] = E [Yi |Zi = zi ] = r(zi ).

So,

E [b(Y ,Z )|Z = z ] = (x ′x)−1x ′

r(z1)
...

r(zn)


Only used random sampling to get here. Can we say anything more
without any additional assumptions?



Expectation of Least-Squares Estimator

We’d need to know something about r(z). Do we know anything?

No - r(z) is unrestricted and without more assumptions,
least-squares estimator is NOT unbiased for the linear predictor
coefficients.

Why?

We can write
Yi = β1X1 + . . .+ βKXK + Ui ,

where Ui ⊥ X1, . . . ,XK . The orthogonality conditions do NOT
imply that

E [Ui |Xi = x ] = 0.
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Expectation of Least-Squares Estimator

Claim: E [Ui |Xi ] = 0 if and only if E [Uih(Xi )] = 0 for all functions
Xi .

Proof:

(⇒) E [Uih(Xi )] = E [E [Ui |Xi ]h(Xi )] = 0.
(⇐) By the projection theorem, the unique solution h∗ to

min
h

E [(U − h(X ))2]

satisfies E [(U − h∗(X ))h(X )] = 0 and we know that
h∗(X ) = E [U|X ] and h(X ) = 0 satisfies the orthogonality
conditions. By the uniquenesss of the solution to the
projection problem, E [U|X ] = 0.

E [Ui |Xi ] = 0 is only true for the “conditional expectation”
projection problem. Not true for the best linear predictor.
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Expectation of the Least Squares Estimator

If we make more assumptions, we can get more!

Suppose the linear predictor is equal to the conditional expectation
function:

r(zi ) = x ′iβ.

Then,

E [b|Z = z ] = (x ′x)−1x ′

x ′1
...
x ′n

β = β

and so,
E [b] = β.

So if r(zi ) = x ′iβ, then b is an unbiased estimator for β.
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Covariance

Recall: Let S = (S1, . . . ,ST )′ be a vector of random variables.
Then,

Cov(S)
T×T

=

Cov(S1,S1) . . . Cov(S1, St)
...

...
Cov(ST , S1) . . . Cov(ST , ST )


Property: Let a1 be an M × T matrix of scalars. Then,

Cov(a1S) = a1Cov(S)a′1.



Covariance Matrix of Least Squares

Once again, we condition on Z = z . What’s Cov(b(Y ,Z )|Z = z)?

Simple:

Cov(b(Y ,Z )|Z = z) = Cov((X ′X )−1X ′Y |Z = z)

= Cov((x ′x)−1x ′Y |Z = z)

= (x ′x)−1x ′Cov(Y |Z = z)x(x ′x)−1



Covariance Matrix of Least Squares

Once again, we condition on Z = z . What’s Cov(b(Y ,Z )|Z = z)?

Simple:

Cov(b(Y ,Z )|Z = z) = Cov((X ′X )−1X ′Y |Z = z)

= Cov((x ′x)−1x ′Y |Z = z)

= (x ′x)−1x ′Cov(Y |Z = z)x(x ′x)−1



Covariance Matrix of Least Squares

What’s Cov(Y |Z = z)? We have that

Cov(Y |Z = z) =

V (Y1|Z1) . . . 0
...

. . .
...

0 . . . V (Yn|Zn)


If we additionally assume homoskedasticity

V (Yi |Zi = z) = σ2,

then
Cov(Y |Z = z) = σ2In

and
Cov(b|Z = z) = σ2(x ′x)−1.
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Summarizing

Under random sampling, if E [Yi |Zi = zi ] = x ′iβ and
V (Yi |Zi = zi ) = σ2, then

E [b|Z = z ] = β, Cov(b|Z = z) = σ2(x ′x)−1.
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