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Bias of Least-Squares Estimator

Recall: Under random sampling, least-squares estimator is biased
in finite samples for the coefficients of the best linear predictor

Example:
Yi = X 3

i + εi

Xi ∼ N(0, 1) and εi ∼ N(0, 1) with Xi ⊥ εi .
E ∗[Yi |Xi ] = βXi with
β = E [YiXi ]/E [X 2

i ] = E [X 4
i ]/E [X 2

i ] = 3.

Simulation:
For b = 1, . . . ,B : Draw n pairs of (Y b

i ,X
b
i ). Compute β̂b and

store it.
B = 1000, n = 30.



Least-Squares Estimator is biased for β

Figure: E [β̂] ≈ 2.94, β = 3



Bias of Least-Squares Estimator

Recall: Under random-sampling, least-squares estimator is
unbiased for

γ = arg min
γ

n∑
i=1

[r(xi )− γxi ]2

i.e. the best linear approximation to the conditional expectation
function evaluated at {xi : i = 1, . . . , n}.
Simulation:

Same model as earlier.
(1) Draw Xi = xi for i = 1, . . . , n. Construct r(xi ) = x3

i .
Compute γ.
(2) For b = 1, . . . ,B , draw εbi for i = 1, . . . , n. Form
Y b
i = x3

i + εbi . Construct least-squares estimator β̂b and store
it.
B = 1000, n = 30.



Least-Squares Estimator is unbiased for γ.
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Convergence in Probability

The sequence of random variables Xn converges in probability to
a constant α if

lim
n→∞

P(|Xn − α| > ε) = 0

for all ε > 0.

We write Xn
p−→ α.
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The sequence of random variables Xn converges in probability to
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for all ε > 0.

We write Xn
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Law of Large Numbers

Theorem
If Wi are i.i.d. with E [|Wi |] <∞, then

n−1
n∑

i=1

Wi
p−→ E [Wi ].



Slutsky Theorem

Also known as Continuous Mapping Theorem (CMT).

Theorem
If the sequence of random variables Qn takes on values in RJ and
Qn

p−→ α and the function g : RJ → RM is continuous at α, then

g(Qn)
p−→ g(α).
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Consistent Estimation of β

Observe n realizations of the random vector (Yi ,Xi1, . . . ,XiK ). Let

X ′i = (Xi1, . . . ,XiK ).

Assume that (Yi ,X
′
i ) are i.i.d. from some joint distribution.

Consider the best linear predictor

E ∗[Yi |Xi ] = X ′i β,

and the least-squares estimator

b̂ =
(1
n

n∑
i=1

XiX
′
i

)−1(1
n

n∑
i=1

XiYi

)
.

The population parameter of interest is β ∈ RK .
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Consistent Estimation

Theorem

b̂
p−→ β

as n→∞.

Proof.
By the LLN,

1
n

n∑
i=1

XiX
′
i

p−→ E [XiX
′
i ],

1
n

n∑
i=1

XiYi
p−→ E [XiYi ].

Result follows by Slutsky’s Theorem and the Continuous Mapping
Theorem.



Some simulations

Same model as earlier:
Yi = X 3

i + εi

Xi ∼ N(0, 1) and εi ∼ N(0, 1) with Xi ⊥ εi .
E ∗[Yi |Xi ] = βXi with
β = E [YiXi ]/E [X 2

i ] = E [X 4
i ]/E [X 2

i ] = 3.

Repeat the simulation as earlier but let n increase from 100 to
5000.

Look at what happens to the sampling distribution of β̂. Watch the
magic of the LLN unfold before your eyes!
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Repeat the simulation as earlier but let n increase from 100 to
5000.

Look at what happens to the sampling distribution of β̂. Watch the
magic of the LLN unfold before your eyes!



LLN at Work
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Convergence in Distribution

Let W be a K × 1 random variable distributed N(0,Σ). A
sequence of random variables of random variables Sn converges in
distribution to N(0,Σ) if for an (well-behaved/measurable) subset
A ∈ RK , we have

lim
n→∞

P(Sn ∈ A) = P(W ∈ A).

We write
Sn

d−→W .
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Central Limit Theorem

Theorem
If the K × 1 random vector Gi are i.i.d. across i with E [Gi ] = 0
and Cov(Gi ) = Σ, then

1√
n

n∑
i=1

Gi =
√
nḠn

d−→ N(0,Σ),

where Ḡn = n−1∑n
i=1 Gi .



More Slutsky

Theorem
Let Sn be a sequence of K × 1 random variables with Sn

N−→ (0,Σ).
Let Qn be a sequence of J × K random variables with
Qn

α−→∈ RJ×K . Then

QnSn
d−→ α · N(0,Σ) = N(0, αΣα′).
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Set-up

As always, define
Ui = Yi − E ∗[Yi |Xi ].

So,
Yi = X ′i β + Ui , E [XiUi ] = 0.

Recall:

b =
(1
n

n∑
i=1

XiX
′
i

)−1(1
n

n∑
i=1

XiYi

)
.

Sub-in expression for Yi into expression for b.
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Set-up

Algebra magic:

b = β +
(1
n

n∑
i=1

XiX
′
i

)−1(1
n

n∑
i=1

XiUi

)
.

Re-arrange and multiply by
√
n:

√
n(b − β) =

(1
n

n∑
i=1

XiX
′
i

)−1( 1√
n

n∑
i=1

XiUi

)
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Limit Distribution of Least-Squares Estimator

Theorem

√
n(b − β)

d−→ N(0, αΣα′),

where α = E [XiX
′
i ] and Σ = E [U2

i XiX
′
i ].



Limit Distribution of Least-Squares Estimator (proof)

Gi = XiUi and so, Gi i.i.d. (random sampling), E [Gi ] = 0
(orthogonality conditions), Cov(Gi ) = E [U2

i XiX
′
i ].

CLT:
1√
n

n∑
i=1

Gi
d−→ N(0,Σ).

LLN + CMT: (1
n

n∑
i=1

XiX
′
i

)−1 p−→ E [XiX
′
i ]−1.

Result then follows by Slutsky Theorem.
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Limit Distribution of Least-Squares Estimator (proof)

Were you paying attention?

CLT requires the existence of Cov(Gi ) i.e. existence of second
moments.

We defined Gi = UiXi . So we need, E [U2
i XiX

′
i ] to be finite.

For this limit distribution argument to work, we need to make an
assumption about the 4-th moments of X - Ui = Yi − Xiβ and so,
E [U2

i XiX
′
i ] is a function of 4th moments.
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Some simulations: CLT at work

Figure: Caption



Outline

Some simulations

Consistent Estimation of the Linear Predictor Coefficients
Asymptotics Refresher pt. I
Consistent Estimation

Asymptotic Distributon of the Least-Squares Estimator
Asymptotics Review pt. II
Asymptotic Distribution

Inference
Confidence Intervals
Review of Hypothesis Testing
Hypothesis Testing for the Best Linear Predictor

Homoskedasticity



Using the Limit Distribution

We have that √
n(b − β)

d−→ N(0,Λ),

where Λ = αΣα′.

We can use this to create confidence intervals and do hypothesis
testing. Just need a consistent estimator of Λ.
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Consistent Estimator of Λ
How do we consistently estimate Λ?

Need to consistently estimate

α = E [XiX
′
i ]
−1, and Σ = E [U2

i XiX
′
i ].

α is easy:

α̂ =
(1
n

n∑
i=1

XiX
′
i

)−1
.

For Σ: Plug-in estimates of Ui with Ûi = Yi − X ′i b. Then,

Σ̂ =
1
n

n∑
i=1

Û2
i XiX

′
i .

Can show that Σ̂
p−→ Σ. See Hayashi Ch. 2 - need additional

assumption about 4th moments of Xi .
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Û2
i XiX

′
i .

Can show that Σ̂
p−→ Σ. See Hayashi Ch. 2 - need additional

assumption about 4th moments of Xi .



Consistent Estimator of Λ

Our estimator of Λ is:
Λ̂ = α̂Σ̂α̂′

By Slutsky Theorem, Λ̂
p−→ Λ.
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Confidence Intervals

Consider linear combinations of coefficients:

l ′β =
K∑
j=1

ljβj .

Consider the statistic
l ′[
√
n(b − β)]√
l ′Λ̂l

By Slutsky Theorem

l ′[
√
n(b − β)]

d−→ N(0, l ′Λl)√
l ′Λ̂l

p−→
√
l ′Λl .
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Confidence Intervals

Theorem

l ′[
√
n(b − β)]√
l ′Λ̂l

d−→ N(0, 1).

We refer to the ratio l ′[
√
n(b−β)]√
l ′Λ̂l

as an asymptotic pivot for l ′β. It

depends on the unknown parameters l ′β but its asymptotic limit
distribution is known and doesn’t depend on them.

We use this asymptotic pivot for asymptotic confidence intervals.
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Confidence Intervals

The previous theorem immediately gives us that

lim
n→∞

P[l ′b − 1.96 · SE ≤ l ′β ≤ l ′b + 1.96 · SE ] = 0.95,

where SE =
√

l ′Λ̂l .

How do you interpret this?
As n gets arbitrarily large, the probability that the true
parameter lies in the interval (which is random) approaches
95%.

How do you get a 95% confidence interval for a single parameter βj
from this?
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Simple Example

Interested in parameter θ that characterizes the probability
distribution of Y . Assume θ is one dimensional for simplicity.

Suppose we have an estimator θ̂ with

θ̂ ∼ N(θ,Ω),

which may be coming from an asymptotic approximation. Assume
Ω is known (again for simplicity).

We have two hypotheses:

H0 : θ = θ0

Ha : θ 6= θ0.
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Simple Example

How do we decide between the null and the alternative?
Idea: if θ = θ0, then θ̂ should be close to θ0 with high
probability.
We formalize this intuition with a test statistic.

One candidate:

Ŵ =
(θ̂ − θ0)2

Ω
.

Test statistics of this form are called Wald statistics.
Just the usual t-statistic squared, t = θ̂−θ√

Ω
.
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Simple Example

Under H0,
Ŵ ∼ χ2

1.

Let’s use this to design a rule for rejection H0.

Rule will take the form: If

Ŵ ≤ c =⇒ fail to reject H0

Ŵ > c =⇒ reject H0

where c is some critical value.
Intuition: Large values of Ŵ are unlikely under H0.



Simple Example

How do we pick c? We pick c to control size.
Size: Probability of rejecting given that H0 is true.

P(Ŵ > c |H0) = α

Low probability of “Type-I error.”

We also want tests with high power.
Power: Probability of rejecting given that Ha is true.

P(Ŵ > c |Ha)

Classical approach: Among tests with the same size α, we want
the test with maximal power.

Neyman-Pearson Lemma - classic result in this approach.
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Simple Example

Let’s write an expression for the power.
Suppose θ 6= θ0 and define δ = (θ − θ0)/

√
Ω.

We have that the power is

Pa[Ŵ > c] = Pa[
((θ̂ − θ)− (θ − θ0))2

Ω
> c] (1)

= Pa[(
θ̂ − θ1√

Ω
+
θ1 − θ√

Ω
)2 > c] (2)

= Pa[(Z + δ)2 > c] (3)

where Z ∼ N(0, 1). As a function of δ, this is the power function
of the test.

Plots how the power varies as δ changes. Large values of δ
=⇒ high power - “easy to detect large deviations from the
null.”
Basis of power calculations in experiments.



Simple Example

Suppose that
√
n(θ̂ − θ)

d−→ N(0,V ). Then,

Ω ≈ n−1V

and so,

Ŵ = n
(θ̂ − θ0)2

V

approx ,H0∼ χ2
1.

Set c = 1− α quantile of χ2
k . Then, the test has asymptotically

correct size.



Simple Example

Under Ha,

Ŵ =
(√

n
θ̂ − θ√

V
+
√
n
θ − θ0√

V

)2

for large n.

The asymptotic power of the test is 1. Why?
√
n multiplying a term that is not going to zero. This blows

up as n→∞.
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Take-away

Good to be aware of the terminology: size, power.

A lot of areas in econometrics start off with: ”The size of our usual
tests under our standard assumptions is too large. What is going
on?”

Weak instruments
See 2018 NBER SI methods lecture.

HAC/HAR inference
Size-power tradeoff.
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Hypothesis Testing

We can use this for hypothesis testing as well. Consider the null
hypothesis (against the two-sided alternative)

H0 : l ′β = l ′β0.

Under the null:
l ′[
√
n(b − β0)]√

l ′Λ̂l

d−→ N(0, 1).

Choose critical value c s.t. P(|N(0, 1)| > c) = 1− α. At this
critical value, test statistic has asymptotic size (Type-I error) equal
to α and power against the alternative equal to 1.
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Wald/F-test

We can also test null hypothesis of the form

R ′β = r ,

where R is K ×m matrix and r is an m × 1 vector.

Form the usual Wald statistic:

Wn = n · (R ′b − r)′[R ′Λ̂R]−1(R ′b − r).
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Wald/F-test

Claim: If Un
d−→ N(0,V ) and Vn

p−→ V , then U ′nV
−1
n Un

d−→ χ2
m,

where m = dim(Un).

Use the claim to show that

Wn
d−→ χ2

m

and so, you can once again form an asymptotic test of the
null-hypothesis with the correct asymptotic size.
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Summary so far

Derived the limit distribution of the least-squares estimator using
ONLY the assumption of random sampling.

If we make more assumptions, the asymptotic inference becomes
more simple.

Let’s additionally assume:
(1): E [Yi |Xi ] = X ′i β

(2): V (Yi |Xi ) = σ2.

Or equivalently,
(1): E [Ui |Xi ] = 0
(2): V (Ui |Xi ) = E [U2

i |Xi ] = σ2.
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Homoskedasticity

What does this get us? Simplifies the asymptotic variance

Σ = E [U2
i XiX

′
i ] = E [E [U2

i |Xi ]XiX
′
i ] = σ2E [XiX

′
i ].

So, we have that

Avar(b) = σ2E [XiX
′
i ]−1.

Also simplifies estimation

σ̂2 = SSR/n =
1
n

n∑
i=1

(Yi − X ′i b)2

Λ̂ = σ̂2
(1
n

n∑
i=1

XiX
′
i

)−1
.
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