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Recall: Inference Problem

The data are a realization of some random vector

D = (Y1, . . . ,Yn,Z1, . . . ,Zn),

where Yi is a scalar outcome and Zi is a vector of predictors.
Also write D = (D1, . . . ,Dn) with Di = (Yi ,Zi ).

Assume D is drawn from some distribution (unknown).

Specify set of distributions that contains D

D ∼ Pθ, for some θ ∈ Θ.

Θ is the parameter space.
Assume Di i.i.d. =⇒ can factor the joint distribution of D.
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Recall: Probability models

The probability model is a map from the parameter space to a set
of distributions

θ → Pθ

Last section: We only assumed the data are i.i.d. But paid a price
– only able to do inference using asymptotic approximations (which
can be very poor in finite samples).

Bayesian Perspective: Specify a probability measure over Θ and
exploit Bayes’ Rule to perform inference – inference becomes
conditional on the data.

Let Π be a probability measure over Θ. This is prior
distribution.
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The probability model

So, the state space is

S = Θ×D = {(θ, d) : θ ∈ Θ, d ∈ D}.

Pθ is a conditional distributional, D|Θ = θ.

We can write the joint distribution.
Notation: Θ is a random variable, D is a random variable.

P(θ ∈ B,D ∈ A) =

∫
B
Pθ(A)π(θ)dθ.

Bayes’ Rule:

P(θ ∈ B|D ∈ A) =

∫
B
Pθ(A)π(θ)dθ/

∫
Θ
Pθ(A)π(θ)dθ.
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Bayes’ Rule

We will perform inference using the posterior distribution of
θ|D = d .

This encodes all our uncertainty about θ given that we
observed the data D = d .

Typically write
π(θ|d) ∝ f (d |θ)π(θ),

where we omit a constant that makes the posterior integrate to one
(f (d)).



Outline

Setting it all up

Beta-Bernoulli Model
Credible Sets

Discrete-Dirichlet Model
Representing the Posterior
Predictive Distribution

Dogmatic Priors



The data

Data are X = (X1, . . . ,Xn).
Conditional on θ, the Xi are i.i.d with

P(Xi = 1|θ) = θ, P(Xi = 0|θ) = 1− θ.

The parameter space is Θ = [0, 1].
Observe realizations x = (x1, . . . , xn).



The likelihood

The likelihood function is then

fθ(x) = f (x |θ)

= P(X = x |θ)

= Πn
i=1P(Xi = xi |θ)

= Πn
i=1θ

yi (1− θ)1−yi

= θn1(1− θ)n0

where n1 =
∑n

i=1 yi and n0 =
∑n

i=1(1− yi ) = n − n1.

n1, n0 are sufficient statistics for the likelihood function.
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The prior

The prior distribution is a beta distribution with parameters
a, b > 0.

Support is over [0, 1] with density

π(θ) ∝ θa−1(1− θ)b−1.

Prior mean and variance are

E [θ] =
a

a + b
, V (θ) =

a

a + b

b

a + b

1
a + b + 1

.



The posterior

The posterior distribution is given by Bayes’ rule.

π(θ|x) ∝ fθ(x)π(θ)

∝ θa+n1−1(1− θ)b+n0−1

The posterior distribution is also a beta distribution with
parameters a + n1, b + n0.



The posterior

The posterior mean is then

E [θ|x ] =
a + n1

a + b + n
= λ

n1

n
+ (1− λ)

a

a + b

where λ = n
a+b+n .

The posterior mean is a convex combination of the sample
mean n1/n and the prior mean a/(a + b).
If a + b is small relative to n, then most of the weight is
placed on the sample mean.

The posterior variance is

V (θ|x) =
E [θ|x ](1− E [θ|x ])

n + a + b + 1
.
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Credible Sets

We can use the posterior distribution to form credible sets – the
Bayesian “equivalent” of a confidence interval.

A 1− α credible set Θ1−α satisfies∫
Θ1−α

π(θ|x)dθ = 1− α

It covers 1− α% of the mass of the posterior distribution.
Any set that satisfies this is a credible interval.
We will typically consder one that is symmetric around the
mean.
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Interpreting Credible Sets

What is the interpretation of this? How is it different from
frequentist confidence intervals?

Recall: A 1−α frequentist confidence interval is “if I randomly
sampled my data and formed my confidence interval, the true
parameter will be contained in the interval 95% of the time.”

Bayesian inference is conditional on the data.
The credible interval states: Given the data I observed, there is
a 95% probability that θ falls in this region.
These are different interpretations.

In Frequentist inference, the data are viewed as random and the
parameter is fixed.

In Bayesian inference, the data are fixed and the parameter is
random.
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Improper priors

What happens as a, b → 0? Prior becomes

π(θ) ∝ θ−1(1− θ)−1.

Not a probability density as it integrates to ∞ over [0, 1]. Call this
an improper prior.

But, the associated posterior distribution is well-defined.
The posterior distribution is again a beta distribution but with
parameters, n1, n0.
Note

E [θ|x ] =
n1

n
= x̄

That is, the posterior conditional expectation coincides with
the sample average
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The data

Data are D = (D1, . . . ,Dn).
Each Di takes on discrete set of values {αj : j = 1, . . . , J}.
Conditional on θ, the Di are i.i.d. with

P(Di = αj |θ) = θj for j = 1, . . . , J.

Parameter space is the unit simplex on RJ with

Θ = {θ ∈ RJ : θj ≥ 0,
J∑

j=1

θj = 1}.

Observe realizations d = (d1, . . . , dn).



The data

The values of Di may be vectors and we will apply these results to
inference for the linear predictor.

Think of

Di =

(
Xi

Yi

)
, αj =

(
αxj

αy j

)
.



The likelihood

The likelihood function is

fθ(d) = f (d |θ)

= Πn
i=1P(Di = di |θ)

= Πn
i=1ΠJ

j=1θ
1(di=αj )
j

= ΠJ
j=1θ

nj
j

where nj =
∑n

i=1 1(di = αj) for j = 1, . . . , J.

nj for j = 1, . . . , J are sufficient statistics for the likelihood.
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The prior

Prior distribution is a Dirichlet distribution with parameters
a1, . . . , aJ > 0.

Generalizes a generalization of the beta distribution.
Its support is over the unit simplex in RJ .
Has density

π(u1, . . . , uJ) ∝ ΠJ
j=1u

aj−1
j .

for uj > 0,
∑J

j=1 uj = 1.



The posterior

The posterior distribution is given by Bayes’ rule.

π(θ|x) ∝ fθ(x)π(θ)

∝ ΠJ
j=1θ

aj+nj−1
j .

The posterior distribution is also Dirichlet but with parameters
aj + nj for j = 1, . . . , J.

Can consider the improper prior with aj → 0 for each j = 1, . . . , J.
With this improper prior, the posterior distribution remains
Dirichlet and has parameters n1, . . . , nJ .
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Representing the Dirichlet Distribution

Recall: We can represent the Dirichlet distribution using
Gamma-distributed random variables.

Let Qj ∼ Gamma(aj , 1). If Q1, . . . ,QJ are independent then

(Q1/

J∑
j=1

Qj , . . . ,QJ/

J∑
j=1

Qj) ∼ Dirichlet(a1, . . . , aJ).

For case J = 2,

(Q1/(Q1 + Q2),Q2/(Q1 + Q2)) ∼ Beta(a1, a2).
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Representing the posterior

So, we can represent the posterior for θ as

θ|d ∼ (Q1/

J∑
j=1

Qj , . . . ,QJ/

J∑
j=1

Qj),

where Qj ∼ Gamma(nj + aj , 1) for j = 1, . . . J.

Moreover, each component θj has the representation

θj |d ∼
Qj

Qj +
∑

k 6=j Qj
= β(nj + aj ,

∑
k 6=j

nk + ak).

So,
E [θj |d ] =

nj + aj∑J
k=1 nk + ak

.

Can similarly write V (θj |d) using formulas from before.
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Predictive distribution

Let’s see what we can do with our posterior θ|d .
Let’s use it for prediction.

Suppose there is a new observation Dn+1. We want to predict it.

Our object of interest is

γ = P(Dn+1 ∈ A|θ) =
∑
j∈C

θj

where C = {j : αj ∈ A}.
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Predictive distribution

P(Dn+1 ∈ A|θ) = γ(θ) is just a function of θ. We derive its
posterior distribution. That is,

γ(θ)|d ∼?

Turns out to be simple. Use the special case of J = 2 from earlier.

θj |d ∼
Qj

Qj +
∑

k 6=j Qj
=⇒

∑
j∈C

θj ∼
∑

j∈C Qj∑J
k=1 Qj

where
∑

j∈C Qj ∼ Gamma(
∑

j∈C nj + aj),∑
j 6∈C Qj ∼ Gamma(

∑
j 6∈C nj + aj).
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Predictive distribution

So,

γ(θ)|d ∼
Qj

Qj +
∑

k 6=j Qj
∼ Beta(

∑
j∈C

nj + aj ,
∑
j 6∈C

nj + aj).

The conditional distribution of Dn+1 given (D1, . . . ,Dn) = d is the
predictive distribution.

Notice that θ has been integrated out using the posterior
distribution.
We can use iterated expectations for this!



Predictive distribution

We have

P(Dn+1 ∈ A|d) = E [1(Dn+1 ∈ A)|d ]

= E [E [1(Dn+1 ∈ A)|θ, d ]|d ]

= E [E [1(Dn+1 ∈ A)|θ]|d ]

= E [γ(θ)|d ]

=

∑
j∈C nj + aj∑J
j=1 nj + aj

.
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Approximating continuous distributions

We can use the discrete-dirichlet model to approximate continuous
distributions by letting J →∞.

In doing so, we need to be careful that the prior does not become
dogmatic.

We want to ensure that the prior is “responsive to the data.”

We want to ensure that the posterior doesn’t just return the prior...
that we actually learning from the data.

Illustrate what can go wrong with the predictive distribution as
J →∞ if we aren’t careful.
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Predictive distribution: J →∞

Recall:

γ = P(Dn+1 ∈ A|d) = E [γ|w ] =

∑
j∈C nj + aj∑J
j=1 nj + aj

.

Suppose that aj = ε > 0 fixed for all j and let J →∞ while the
data d = (d1, . . . , dn) is fixed.

Assume that
1
J

∑
j∈C

1→ r

as J →∞. That is, the fraction of support points in A approaches
r in the limit.
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Predictive distribution: J →∞

Claim: Then,
P(Dn+1 ∈ A|d)→ r .

Why? The prior is dogmatic for γ. The prior for γ is

γ ∼ Beta(
∑
j∈C

aj ,
∑
j 6∈C

aj).

So,

E [γ] =

∑
j∈C aj∑
j 6∈C aj

=
1
J

∑
j∈C

1→ r ,

V (γ) =
E [γ](1− E [γ])

1 +
∑J

j=1 aj
=

E [γ](1− E [γ])

1 + εJ
→ 0

As J →∞, for fixed ε, the prior distribution becomes concentrated
around r .



What to do?

To avoid this, we let aj →∞ for all j as J →∞.
In the limit, this produces the improper Dirichlet distribution.
So, if nj ≥ 1 for all j , the posterior will be a proper Dirichlet.
But if we want J to approximate continuous distributions, we’ll
allow zero counts.

So, if the count nk = 0, the limiting posterior of θk as J → 0 will
become concentrated around 0.

=⇒ Support points with nk = 0 drop out of the posterior
distribution, which is concentrated around support points with
nj > 0.
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Why?

Gives us a way to take the tools we have (Discrete-Dirichlet) and
apply it to continuous data.

We use a limiting dirichlet prior and the posterior becomes
concentrated around only support points on which we observe
data.
We’ll next apply this to the linear predictor.
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