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Recall: Inference Problem

The data are a realization of some random vector

D = (Y1, . . . ,Yn,Z1, . . . ,Zn),

where Yi is a scalar outcome and Zi is a vector of predictors.
Also write D = (D1, . . . ,Dn) with Di = (Yi ,Zi ).

Assume D is drawn from some distribution (unknown).

Specify set of distributions that contains D

D ∼ Pθ, for some θ ∈ Θ.

Θ is the parameter space.
Assume Di i.i.d. =⇒ can factor the joint distribution of D.



Recall: Probability models

The probability model is a map from the parameter space to a set
of distributions

θ → Pθ

Last section: We only assumed the data are i.i.d. But paid a price
– only able to do inference using asymptotic approximations (which
can be very poor in finite samples).

Bayesian Perspective: Specify a probability measure over Θ and
exploit Bayes’ Rule to perform inference – inference becomes
conditional on the data.

Let Π be a probability measure over Θ. This is prior
distribution.



The probability model

So, the state space is

S = Θ×D = {(θ, d) : θ ∈ Θ, d ∈ D}.

Pθ is a conditional distributional, D|Θ = θ.

We can write the joint distribution.
Notation: Θ is a random variable, D is a random variable.

P(θ ∈ B,D ∈ A) =

∫
B
Pθ(A)π(θ)dθ.

Bayes’ Rule:

P(θ ∈ B|D ∈ A) =

∫
B
Pθ(A)π(θ)dθ/

∫
Θ
Pθ(A)π(θ)dθ.



Bayes’ Rule

We will perform inference using the posterior distribution of
θ|D = d .

This encodes all our uncertainty about θ given that we
observed the data D = d .

Typically write
π(θ|d) ∝ f (d |θ)π(θ),

where we omit a constant that makes the posterior integrate to one
(f (d)).
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The data

Data are D = (D1, . . . ,Dn).
Each Di takes on discrete set of values {αj : j = 1, . . . , J}.
Conditional on θ, the Di are i.i.d. with

P(Di = αj |θ) = θj for j = 1, . . . , J.

Parameter space is the unit simplex on RJ with

Θ = {θ ∈ RJ : θj ≥ 0,
J∑

j=1

θj = 1}.

Observe realizations d = (d1, . . . , dn).



The data

The values of Di may be vectors and we will apply these results to
inference for the linear predictor.

Think of

Di =

(
Xi

Yi

)
, αj =

(
αxj

αy j

)
.



The likelihood

The likelihood function is

fθ(d) = f (d |θ)

= Πn
i=1P(Di = di |θ)

= Πn
i=1ΠJ

j=1θ
1(di=αj )
j

= ΠJ
j=1θ

nj
j

where nj =
∑n

i=1 1(di = αj) for j = 1, . . . , J.

nj for j = 1, . . . , J are sufficient statistics for the likelihood.



The prior

Prior distribution is a Dirichlet distribution with parameters
a1, . . . , aJ > 0.

Generalizes a generalization of the beta distribution.
Its support is over the unit simplex in RJ .
Has density

π(u1, . . . , uJ) ∝ ΠJ
j=1u

aj−1
j .

for uj > 0,
∑J

j=1 uj = 1.



The posterior

The posterior distribution is given by Bayes’ rule.

π(θ|x) ∝ fθ(x)π(θ)

∝ ΠJ
j=1θ

aj+nj−1
j .

The posterior distribution is also Dirichlet but with parameters
aj + nj for j = 1, . . . , J.

Can consider the improper prior with aj → 0 for each j = 1, . . . , J.
With this improper prior, the posterior distribution remains
Dirichlet and has parameters n1, . . . , nJ .
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Gamma Random Variables

Recall: We can represent the Dirichlet distribution using
Gamma-distributed random variables.

Q ∼ Gamma(a, l) with parameters a > 0, l > 0 if

fQ(q) =
laxa−1e−lx

Γ(a)

for q > 0 and 0 otherwise.
For a = 1, Gamma(1, l) ∼ Exponential(l).
You can show that the sum of i.i.d. exponential random
variables is a Gamma distribution

n∑
i=1

Exponential(l) ∼ Gamma(n, l).



Properties of Gamma Random Variables

Fact 1: Suppose X ∼ Gamma(a1, l), Y ∼ Gamma(a2, l) with
X ⊥ Y . Consider

U = X + Y ,V = X/(X + Y ).

U ⊥ V and

U ∼ Gamma(a1 + a2, l),V ∼ Beta(a1, a2).



Properties of Gamma Random Variables

Fact 2: Suppose X1,X2 . . . are independent gamma random
variables with Xi ∼ Gamma(ai , l). Then,

X1/(X1 + X2) ∼ Beta(a1, a2)

X1 + X2

X1 + X2 + X3
∼ Beta(a1 + a2, a3)

...
X1 + . . .+ XK−1

X1 + . . .+ XK
∼ Beta(α1 + . . .+ αK−1, αK )

are independent.



Gamma Random Variables and the Dirichlet Distribution

Fact 3: Let Qj ∼ Gamma(aj , 1). If Q1, . . . ,QJ are independent
then

(Q1/

J∑
j=1

Qj , . . . ,QJ/

J∑
j=1

Qj) ∼ Dirichlet(a1, . . . , aJ).

Fact 4: The j-th entry is

Qj

Q1 + . . .+ QJ

. Can show that

Qj

Q1 + . . .+ QJ
∼ Beta(aj ,

∑
k 6=j

ak)

(by Fact 2).



Representing the posterior

So, we can represent the posterior for θ as

θ|d ∼ (Q1/

J∑
j=1

Qj , . . . ,QJ/

J∑
j=1

Qj),

where Qj ∼ Gamma(nj + aj , 1) for j = 1, . . . J.

Moreover, each component θj has the representation

θj |d ∼
Qj

Qj +
∑

k 6=j Qj
= beta(nj + aj ,

∑
k 6=j

nk + ak).



Representing the Posterior

So,
E [θj |d ] =

nj + aj∑J
k=1 nk + ak

.

Can similarly write V (θj |d) using formulas from before.
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Predictive distribution

Let’s see what we can do with our posterior θ|d .
Let’s use it for prediction.

Suppose there is a new observation Dn+1. We want to predict it.

Our object of interest is γ = P(Dn+1 ∈ A|d)

Note that
P(Dn+1 ∈ A|θ) =

∑
j∈C

θj

where C = {j : αj ∈ A}.



Predictive distribution

P(Dn+1 ∈ A|θ) = γ(θ) is just a function of θ. We derive its
posterior distribution. That is,

γ(θ)|d ∼?

Turns out to be simple. Use the special case of J = 2 from earlier.

θj |d ∼
Qj

Qj +
∑

k 6=j Qj
=⇒

∑
j∈C

θj ∼
∑

j∈C Qj∑J
k=1 Qj

where
∑

j∈C Qj ∼ Gamma(
∑

j∈C nj + aj),∑
j 6∈C Qj ∼ Gamma(

∑
j 6∈C nj + aj).



Predictive distribution

So,

γ(θ)|d ∼
∑

j∈C Qj∑J
j=1 Qj

∼ Beta(
∑
j∈C

nj + aj ,
∑
j 6∈C

nj + aj).

The conditional distribution of Dn+1 given (D1, . . . ,Dn) = d is the
predictive distribution.

Notice that θ has been integrated out using the posterior
distribution.
We can use iterated expectations for this!



Predictive distribution

We have

P(Dn+1 ∈ A|d) = E [1(Dn+1 ∈ A)|d ]

= E [E [1(Dn+1 ∈ A)|θ, d ]|d ]

= E [E [1(Dn+1 ∈ A)|θ]|d ]

= E [γ(θ)|d ]

=

∑
j∈C nj + aj∑J
j=1 nj + aj

.
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Approximating continuous distributions

We can use the discrete-dirichlet model to approximate continuous
distributions by letting J →∞.

In doing so, we need to be careful that the prior does not become
dogmatic.

We want to ensure that the prior is “responsive to the data.”

We want to ensure that the posterior doesn’t just return the prior...
that we actually learning from the data.

Illustrate what can go wrong with the predictive distribution as
J →∞ if we aren’t careful.



Predictive distribution: J →∞

Recall:

γ = P(Dn+1 ∈ A|d) = E [γ|w ] =

∑
j∈C nj + aj∑J
j=1 nj + aj

.

Suppose that aj = ε > 0 fixed for all j and let J →∞ while the
data d = (d1, . . . , dn) is fixed.

Assume that
1
J

∑
j∈C

1→ r

as J →∞. That is, the fraction of support points in A approaches
r in the limit.



Predictive distribution: J →∞

Claim: Then,
P(Dn+1 ∈ A|d)→ r .

Why? The prior is dogmatic for γ. The prior for γ is

γ ∼ Beta(
∑
j∈C

aj ,
∑
j 6∈C

aj).

So,

E [γ] =

∑
j∈C aj∑J
j=1 aj

=
1
J

∑
j∈C

1→ r ,

V (γ) =
E [γ](1− E [γ])

1 +
∑J

j=1 aj
=

E [γ](1− E [γ])

1 + εJ
→ 0

As J →∞, for fixed ε, the prior distribution becomes concentrated
around r .



What to do?

That’s really bad! It means that even as you see data, your prior
for γ is unchanging! You are NOT learning from your data.

The prior over θ is dogmatic for γ. The prior on γ that π has
all of its mass on r as the support points gets arbitrarily large.

To avoid this, we let aj → 0 for all j as J →∞.
In the limit, this produces the improper Dirichlet distribution.
So, if nj ≥ 1 for all j , the posterior will be a proper Dirichlet.
But if we want J to approximate continuous distributions, we’ll
allow zero counts.



What to do?

So, if the count nk = 0, the limiting posterior of θk as J → 0 will
become concentrated around 0.

Why? θk |w ∼ Beta(0,
∑

j 6=k nj) and E [θk |w ] = 0. Since θk
can only take values between [0, 1], its expectation being zero
implies that P(θk > 0|w) = 0 by Markov’s Inequality.

=⇒ Support points with nk = 0 drop out of the posterior
distribution, which is concentrated around support points with
nj > 0.



Why?

Gives us a way to take the tools we have (Discrete-Dirichlet) and
apply it to continuous data.

We use a limiting dirichlet prior and the posterior becomes
concentrated around only support points on which we observe
data.
We’ll next apply this to the linear predictor.
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The Best Linear Predictor

Goal: Take framework we just set-up and apply it to the best linear
predictor.

An observation is D ′i = (X ′i ,Yi ), where X ′i is K × 1 vector and Yi is
a scalar.

Di takes on J possible values denoted

αj =

(
αxj

αyj

)
j = 1, . . . , J.

Assume conditional on θ, Di are i.i.d. with

P(Di = αj |θ) = θj .



The Best Linear Predictor

Given θ, the coefficients on the best linear predictor are defined as

β(θ) = arg min
c

E [(Yi − X ′i c)2|θ].

Equivalently,

β(θ) = E [XiX
′
i |θ]−1E [XiYi |θ]

=
(1
J

J∑
j=1

αxjα
′
xjθj

)−1(1
J

J∑
j=1

αxjαyjθj

)
KEY: β is a function of θ. The randomness of θ makes β random.

GOAL: Characterize the distribution of β using the posterior
distribution of θ.



Distribution of β under posterior of θ

We know that

θ|d ∼ dirichlet(n1 + a1, . . . , nJ + aJ)

and we can represent this as

θ|d ∼ (Q1, . . . ,QJ)/
J∑

j=1

QJ ,

where Qi ∼ Gamma(aj + nj , 1).



Distribution of β under posterior of θ

Algorithm: Brute Force

For b = 1, . . . ,B :
(1) Draw Qb

j ∼ Gamma(aj + nj , 1) independently for
j = 1, . . . , J.
(2) Form θb = (Qb

1 , . . . ,Q
b
J )/

∑J
j=1 Q

b
j .

(3) Compute βb = β(θb) using

β(θb) =
(1
J

J∑
j=1

αxjα
′
xjθ

b
j

)−1(1
J

J∑
j=1

αxjαyjθ
b
j

)
Store βb.

The resulting values β1, . . . , βB are draws from the posterior
distribution β|d .



Concerns?

This algorithm was for fixed J. What if X ,Y are continuous?
The Bayesian Bootstrap will help us in this case. It is just an
computational tool that applies our results about limiting
Dirichlet priors.
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Allowing for continuous data

Letting aj → 0, we can represent the posterior distribution as

β|d ∼ arg min
c

∑
j :nj>0

Qj(αyj − αxj ′c)2

where Qj ∼ Gamma(nj , 1)

Why don’t we divide by the sum
∑

j Qj? It is a constant that
won’t affect the minimization.

Can we remove the support points and write things in terms of the
data? Yes.



The Bayesian Bootstrap

Let Vi ∼ Gamma(1, 1) ∼ Exponential(1) i.i.d. Then,

n∑
i=1

Vi (yi − x ′i c)2 =
∑
j :nj>0

( ∑
i :di=αj

Vi

)
(αyj − α′xjc)2

∼
∑
j :nj>0

Qj(αyj − α′xjc)2

So,

β|d ∼ arg min
c

n∑
i=1

Vi (yi − x ′i c)2

or equivalently,
β|d ∼ (x̃ ′x̃)−1(x̃ ′ỹ)

where x̃ =


√
V1x

′
1

...√
Vnx

′
n

 and ỹ =


√
V1y1
...√
Vnxn

 is defined similarly.



The Bayesian Bootstrap

Algorithm: Bayesian Bootstrap

For b = 1, . . . ,B :
(1) Draw V b

i ∼ Exponential(1) independently for
i = 1, . . . , n.
(2) Compute βb using

arg min
c

n∑
i=1

Vi (yi − x ′i c)2.

Store βb.
The resulting values β1, . . . , βB are draws from the posterior
distribution β|d associated with the limiting Dirichlet prior.


	Setting it all up
	Discrete-Dirichlet Model
	Representing the Posterior
	Predictive Distribution

	Dogmatic Priors
	The Bayesian Bootstrap
	The Best Linear Predictor
	The Bayesian Bootstrap


