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Reference

Classic textbook: Wooldridge – Econometric Analysis of
Cross-Section and Panel Data

Beautifully written and easy read.
Will draw on it for portions of these notes.
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Motivating Story

Consider a population of individuals. Choose one at random.
The outcome variable is Yt – log of earnings.
The vector of predictor variables is Rt – education, tenure,
industry, etc. This is K × 1.

There are T time periods so we observe (Yt ,Rt) for t = 1, . . . ,T .
NOTE: Cross-walk to the notes: T := M, Example :=
families.

Wish to construct linear predictors of Yt using Rt but imposing
that the coefficients are the same across t = 1, . . . ,T .



Notation

Let

Y
T×1

=

Y1
...

YT

 , R
T×K

=

R11 . . . R1K
...

...
RT1 . . . RTK

 .

Goal: Construct linear predictor of Y given R .
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Generalized Linear Predictor: Projection

Goal: Predict Y with R – use projection machinery to tackle this
problem.

Predictor is

R
T×K

β
K×1

=
(
R(1) . . . R(K)

)
β

= R(1)β1 + . . .+ R(K)βK ,

where R(j) = (R1j , . . . ,RTj)
′ is the j-th column of R .

The prediction error is

U
T×1

= Y − Rβ.



Generalized Linear Predictor: Projection

Recall: Best linear predictor – U scalar
Choose β to minimize E [U2].

Generalized Linear Predictor: U is T × 1 vector – need to
generalize mean-square error.

We’ll consider a “weighted” mean sum of squares:

E [U ′ΦU] =
T∑
s=1

T∑
t=1

φstE [UsUt ],

where Φ is a T × T symmetric, positive definite matrix.
Intuition: We need a way to “trade-off” errors across
equations Ut = Yt − R ′tβ.
Simplest option: Φ = IT and E [U ′ΦU] =

∑T
t=1 E [U2

t ] =⇒
treat errors across equation symmetrically and view equations
as “independent.”



Generalized Linear Predictior: Projection

Recall: Best linear predictor
Want to minimize mean-square error, E [U2].
To do so, defined inner product 〈X ,Y 〉 = E [XY ] and cast
problem as minimum norm problem.

E [U2] = ‖U‖2

Generalized Linear Predictor: Same idea!
Want to minimize, E [U ′ΦU]. To do so, we’ll define an
associated inner product.
Let U,V be T × 1 vectors and Φ be a T × T non-random,
positive definite, symmetric matrix. Define

〈U,V 〉Φ = E [U ′ΦV ].

Can show this satisfies properties of an inner product.



Generalized Linear Predictor: Projection

So, we have that
E [U ′ΦU] = ‖U‖2Φ.

Generalized Linear Predictor Coefficients: β solves

β = arg min
c

E [U ′ΦU] = arg min
c
‖Y − Rβ‖2Φ.

Denote this as

E ∗Φ[Y |R] = Rβ.

In general, β will depend on Φ!



Generalized Linear Predictor: Orthogonality Conditions

The coefficients of the genearlized linear predictor β with weights Φ
solves a minimum-norm problem:

β = arg min
c
‖Y − Rβ‖2Φ.

By the projection theorem, β is characterized by a set of
orthogonality conditions. What are they?

We are projecting Y onto the linear subspace spanned by the
columns of R

Equivalently, projecting Y onto the space of all linear functions
of the columns of R .



Generalized Linear Predictor: Orthogonality Conditions

So, the orthogonality conditions are

〈Y − Rβ,R(j)〉Φ = 0

for j = 1, . . . ,K . Stacking these horizontally and subbing in the
definition of the inner product, we have

E [(Y − Rβ)′

1×T
Φ

T×T
R

T×K
] = 0

1×K

Can rewrite this:

E [(Y − Rβ)′ΦR] = E [Y ′ΦR]− β′E [R ′ΦR] = 0

So, β is characterized by

E [R ′ΦR]β = E [R ′ΦY ].



Generalized Linear Predictor: Orthogonality Conditions

The projection Rβ is unique.

If R has full column rank (with probability 1), then E [R ′ΦR] is
invertible and β is unique with

β = E [R ′ΦR]−1E [R ′ΦY ].
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Understanding Φ

Φ provides tradeoffs across minimizing the mean-square error for
different components of Y .

Simple example: Suppose that T = 2 with

Y =

(
Y1
Y2

)
, R =

(
1 Z1
1 Z2

)
.

Then,

E ∗Φ[Y |R] = Rβ =

(
β1 + β2Z1
β1 + β2Z2

)
.

Because
β1 + β2Zt 6= E ∗[Yt |1,Zt ]

in general, we need to trade-off the errors across t = 1, 2.
Different Φ =⇒ different trade-offs across errors =⇒
different coefficients of the generalized linear predictor



Understanding Φ

There is a special case in which the generalized linear predictor
does NOT depend on the choice of the weight matrix, Φ.

Known as Seemingly Unrelated Regression (SUR).

Simple example: Suppose that

R =

(
1 Z1 Z2 0 0 0
0 0 0 1 Z1 Z2

)
and so,

E ∗Φ[Y |R] = Rβ =

(
β1 + β2Z1 + β3Z2
β4 + β5Z1 + β6Z3

)



Seemingly Unrelated Regression (SUR)

Define

E ∗[Y1|1,Z1,Z2] = γ1 + γ2Z1 + γ3Z3

E ∗[Y2|1,Z1,Z2] = δ1 + δ2Z1 + δ3Z2.

It turns out that the solution to the minimum norm problem

arg min
c
‖Y − Rc‖Φ

will be
(β1, β2, β3) = (γ1, γ2, γ3)

(β4, β5, β6) = (δ1, δ2, δ3)

for any choice of Φ.



Seemingly Unrelated Regression (SUR)
General statement: Define

R =


X ′ 0 . . . 0
0 X ′ . . . 0
...

...
...

0 0 . . . X ′

β =


β1
β2
...
βT


where X is q × 1 and βt is q × 1 for t = 1, . . . ,T .

The generalized linear predictor with weight matrix Φ is

E ∗Φ[Y |R] =


X ′β1
X ′β2
...

X ′βM


and define the cross-sectional best linear predictors

E ∗[Yt |X ] = X ′πt , π =

π1
...
πT

 .



Seemingly Unrelated Regression (SUR): Claim

Claim 1: With this choice of R ,

E ∗Φ[Y |R] = Rπ

for any choice of Φ.



Seemingly Unrelated Regression (SUR): Proof

Write
Y − Rc = (Y − Rπ) + R(π − c).

Then, we can write

E [(Y − Rc)′Φ(Y − Rc)] = E [(Y − Rπ)′Φ(Y − Rπ)]

+ E [(Y − Rπ)′ΦR](π − c)

+ (π − c)′E [R ′Φ(Y − Rπ)]

+ (π − c)′E [R ′ΦR](π − c).



Seemingly Unrelated Regression (SUR): Proof

Next, note that

E [(Y − Rπ)′ΦR] = E [((Y1 − X ′π1) . . . (YT − X ′πT ))ΦR]

We can write

((Y1 − X ′
π1) . . . (YT − X ′

πT ))Φ =
( T∑

t=1
φt1(Yt − X ′

πt ) . . .
T∑

t=1
φtT (Yt − X ′

πt )
)

Then,

((Y1 − X ′
π1) . . . (YT − X ′

πT ))ΦR = ((Y1 − X ′
π1) . . . (YT − X ′

πT ))Φ


X ′ 0 . . . 0
0 X ′ . . . 0
.
.
.

.

.

.
.
.
.

0 0 . . . X ′





Seemingly Unrelated Regression (SUR): Proof

So, combining these last two equations, we get that

E [(Y − Rπ)′ΦR] =
( T∑

t=1
φt1E [(Yt − X ′

πt )X ′] . . .
T∑

t=1
φtT E [(Yt − X ′

πt )X ′]
)

= 0

where each element by the orthogonality conditions of the
cross-sectional best linear predictor.

So, we have that

E [(Y − Rc)′Φ(Y − Rc)] = E [(Y − Rπ)′Φ(Y − Rπ)]

+ (π − c)′E [R ′ΦR](π − c).

and clearly, this norm is minimized at c = π because E [R ′ΦR] is
positive definite if R has full column rank – which we typically
assume. �



Seemingly Unrelated Regression (SUR) – What’s the point?

In this case, the generalized linear predictor is equivalent to the
equation-by-equation best linear predictor.

So, the equations across t are “seemingly unrelated.”

However, inference may need to account for correlation in the error
terms across equations!



Seemingly Unrelated Regression (SUR) – Example

Example: Demand Estimation (Wooldridge 2002; Ch. 7)
The system may be a set of demand functions across goods for
the population of families.

housing = β10 + β11house–prc + β12food–prc+

β13clothing–prc + β14inc + u1

food = β20 + β21house–prc + β22food–prc+

β23clothing–prc + β24inc + u2

clothing = β30 + β31house–prc + β32food–prc+

β33clothing–prc + β34inc + u3.
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Another interpretation of the GLP coefficients

In the SUR case, GLP equivalent to equation-by-equation BLP.

Suppose we are not in the SUR case, is there a connection between
GLP and equation-by-equation BLP?

Yes – GLP coefficients are the “best-approximation” to the
equation-by-equation BLP coefficients in a particular sense.



Best Approximation – Set Up

Begin with the T × K matrix R. Define a vector q × 1 vector X ,
whose elements span the vector space generated by linear
combinations of the elements of R .

So, q ≤ M × K

Each Rij = a′X for some a ∈ Rq.
Fancy (rigorous) way to say: X = Vec(R).

The best linear predictor of Yt using all elements in R is

Ŷt = E ∗[Yt |X ] = X ′πt .



Best Approximation - Set Up

We can stack them up and write:

Ŷ =

 Ŷ1
...

ŶT

 =


X ′ 0 . . . 0
0 X ′ . . . 0
...

...
...

0 0 . . . X ′

π

= (I ⊗ X ′)π

, where π = (π1, . . . , πT )′.

⊗ is the Kroenecker product.



Aside: Kroenecker Product

The Kroenecker Product between matrices A,B is

A⊗ B =

a11B . . . a1KB
...

...
aJ1B . . . aJKB


So, if A is J × K and B is L×M, A⊗ B is K · L× K ·M.

Properties:
(1): (A⊗ B)(C ⊗ D) = (AC )⊗ (BD).
(2): If A,B nonsingular, then

(A⊗ B)−1 = A−1 ⊗ B−1.

(3): (A⊗ B)′ = A′ ⊗ B ′.



Best Approximation - Set Up

The generalized linear predictor imposes that

Ỹt = Rt1β1 + . . .+ RtKβK .

Since each element of R can be written as a linear combination of
elements in X (Rtj = X ′atj), we can write

Ỹt = X ′
K∑
j=1

atjβj

= X ′Atβ,

where we simply collected the a’s into At

At
q×K

= (at1 . . . atK )



Best Approximation – Set Up

We can write

E ∗Φ[Y |R] =

 Ỹ1
...

YT


= (I ⊗ X ′)Aβ

where (I ⊗ X ′)A = R and

A
M·q×K

=

A1
...

AT





Best Approximation – Claim

Claim: Let E ∗Φ[Y |R] = Rβ. Then,

β = arg min
c∈RK

(π − Ac)′
(

Φ⊗ E [XX ′]
)

(π − Ac).

Proof: Same strategy as before. First, write

Y − Rc = [Y − (I ⊗ X ′)π] + (I ⊗ X ′)(π − Ac).

and substitute into E [(Y − Rc)′Φ(Y − Rc)]. Show that the
cross-terms cancel by an orthogonality argument. �



Best Approximation – Looking ahead

Claim: Let E ∗Φ[Y |R] = Rβ. Then,

β = arg min
c∈RK

(π − Ac)′
(

Φ⊗ E [XX ′]
)

(π − Ac).

The generalized linear predictor coefficients is a type of
“minimum-distance estimator” for the unrestricted,
equation-by-equation BLP coefficients.

A best K -dimensional approximation to the K · q-dimensional
equation by equation coefficients.
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Consistent Estimation

Observations: Realizations of random variables Di = (Yi ,Ri ) for
i = 1, . . . , n. Assume Di i.i.d from some joint distribution.

The generalized linear predictor is

E ∗Φ[Yi |Ri ] = Riβ, β = E [R ′i ΦRi ]
−1E [R ′i ΦYi ].

Sample counterpart: (Feasible) Generalized Least Squares

β̂ =
(1
n

n∑
i=1

R ′i Φ̂Ri

)−1(1
n

n∑
i=1

R ′i Φ̂Yi

)
where Φ̂ is an estimator of Φ.



Consistent Estimation

Claim: If Φ̂
p−→ Φ, then

β̂
p−→ β

as n→∞.

Proof: See Lecture Note 5. Mechanical application LLN, Slutsky
and CMT. Just need to be careful because Φ̂ also depends on the
data in principle.

NOTE: This is fixed-T, large-N asymptotics!
Suppose your panel is State × month. Does this sampling
experiment make sense?



Outline

Set-Up

Generalized Linear Predictor
Definition
Understanding Φ
Best Approximation
Consistent Estimation
Asymptotic Distribution



Asymptotic Distribution

Based on Wooldridge Ch. 7 here.

Simple Case: Assume Φ is known and will derivate asymptotic
distribution.

This is generalized least squares. Deriving the asymptotic
distribution for case with Φ̂ is straightforward but just requires
additional care.
See Wooldridge Ch. 7 for details.

I will be extra explicit (probably repetitive) in stating our
assumptions and how we build up to the asymptotic distribution.



Asymptotic Distribution of Generalized Least Squares

Suppose weight matrix is known. Assumptions we need:
(1): E [U ′i ΦRi ] = 0 – Orthogonality condition.
(2): E [R ′i ΦRi ] is non-singular.

Under assumptions (1), (2), we can write GLP coefficients
E ∗Φ[Yi |Ri ] = Riβ as

β = E [R ′i ΦRi ]
−1E [R ′i ΦYi ].



Asymptotic Distribution of Generalized Least Squares

Consider the GLS estimator

β̂ =
(
n−1

n∑
i=1

R ′i ΦRi

)−1(
n−1

n∑
i=1

R ′i ΦYi

)
.

Claim: Under assumptions (1), (2):

β̂
p−→ β.

as n→∞. Proof: By assumptions, Yi = Riβ + Ui . So,

β̂ = β +
(
n−1

n∑
i=1

R ′i ΦRi

)−1(
n−1

n∑
i=1

R ′i ΦUi

)
where the second term

p−→ 0 by assumption (1). �



Asymptotic Distribution of Generalized Least Squares

Now consider

√
n(β̂ − β) =

(
n−1

n∑
i=1

R ′i ΦRi

)−1(√
n
−1

n∑
i=1

R ′i ΦUi

)
By assumption (1) plus some additional moment existence
assumptions,

√
n
−1

n∑
i=1

R ′i ΦUi
d−→ N(0,Ω)

as n→∞, where
Ω = E [R ′i Φuiu

′
iΦRi ].



Asymptotic Distribution of Generalized Least Squares

Claim: Under assumptions (1), (2)

√
n(β̂ − β)

d−→ N(0, αΩα′),

as n→∞, where α = E [R ′i ΦRi ]
−1 and Ω = E [R ′i ΦUiU

′
i ΦRi ].

Proof: Follows by CMT, Slutsky and CLT.



Estimating the Asymptotic Variance

Then, we have that

√
n(β̂ − β)

d−→ N(0,E [R ′iRi ]
−1E [R ′i ΦUiU

′
i ΦRi ]E [R ′iRi ]

−1)

So,

Avar(β̂) = n−1E [R ′iRi ]
−1E [R ′i ΦUiU

′
i ΦRi ]E [R ′iRi ]

−1



Estimating the Asymptotic Variance

Consistently estimating this is simple. Consider

α̂ =
(
n−1

n∑
i=1

R ′iRi

)−1
, Ω̂ = n−1

n∑
i=1

R ′i ΦÛi Û
′
i ΦRi

And form

ˆAvar(β̂) = n−1
(
n−1

n∑
i=1

R ′iRi

)−1(
n−1

n∑
i=1

R ′i ΦÛi Û
′
i ΦRi

)(
n−1

n∑
i=1

R ′iRi

)−1

=
( n∑

i=1

R ′iRi

)−1( n∑
i=1

R ′i ΦÛi Û
′
i ΦRi

)( n∑
i=1

R ′iRi

)−1



This variance estimator is a robust variance matrix estimator –
it allows for arbitrary cross-equation correlation. It is also
heteroskedasticity robust.

AGAIN NOTE: The asymptotics are fixed-T, large-N.
We are describing the behavior of this estimator as the number
of cross-sectional units grows large for a fixed number of
periods.
There are plenty of cases where this may not be a good guide
for the behavior of the estimator – Bertrand, Duflo,
Mullainathan (2004) & Hansen (2007).
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