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Twins Study

Data: Random sample from population of families with twins.
Di = (Yi1,Yi2,Zi1,Zi2) for i = 1, . . . , n.
Yit is earnings of twin t and Zit is education of twin t.

Concern: There is an unobserved variable Ai (family background)
that is correlated with both education and earnings.

The coefficient on education in a regression of earnings on
education will be biased! What can we do?



Twins Study

Assume that (Di ,Ai ) are i.i.d. and we are interested in

E [Yit |Zit ,Ai ]

Ai is unobserved. So what can we do?

Idea: Exploit within-family variation in Yit ,Zit to estimate the
partial effect of interest.
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Latent Variable Model
Consider the regression function for Yit given Zi1,Zi2,Ai . We
assume that

E [Yit |Zi1,Zi2,Ai ] = gt(Zit ,Ai ).

That is, the conditional expectation of Yit only depends on Zit , Ai .

This assumption is known as strict exogeneity.
It is an “exclusion restriction.”
Allows for correlation between the latent variable Ai and the
covariates, Zi1,Zi2.

We additionally place a functional form assumption on the
conditional expectation function.

E [Yit |Zi1,Zi2,Ai ] = γ1t + γ2tZit + γ3tAi .

Note: Typically to assume that γ3t = 1 because Ai is
unobserved. But, we will not directly assume that to make
things general.



Latent Variable Model

We will additionally assume (for now) that the coefficients do not
depend on t:

E [Yit |Zi1,Zi2,Ai ] = γ1 + γ2Zit + γ3Ai .

This is the latent variable model.
It is a “structural model” – the coefficients are of direct
interest to us.
But the conditional expectation function has no observable,
sample counterpart as Ai is unobserved.
Question: Can we learn about γ2 using reduced-form relations
that are observable (e.g. the best linear predictor of Yi t given
Zi1,Zi2)?



Latent Variable Model: The Linear Predictors

The linear predictors for Yit given 1,Zi1,Zi2 are

E ∗[Yi1|1,Zi1,Zi2] = γ1 + γ2Zi1 + γ3E
∗[Ai |1,Zi1,Zi2]

E ∗[Yi2|1,Zi1,Zi2] = γ1 + γ2Zi2 + γ3E
∗[Ai |1,Zi1,Zi2]

The best linear predictor for Ai is

E ∗[Ai |1,Zi1,Zi2] = λ0 + λ1Zi1 + λ2Zi2.

What can we learn about γ2 from these reduced form relations?
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Strict Exogeneity
Our set-up:

Yit = γ1 + γ2Zit + γ3Ai + uit

and strict exogeneity implies that

E [uit |Zi1,Zi2,Ai ] = 0

for t = 1, 2. This implies that

E [zituis ] = 0 s, t = 1, 2.

General set-up:
Yit . = X ′itβ + Ai + uit ,

where i = 1, . . . , n, t = 1, . . . ,T , xit is a K × 1 vector of
covariates, and

E [uit |Xi1, . . . ,XiT ,Ai ] = 0

for all t = 1, . . . ,T . This implies that

E [uitXis ] = 0 s, t = 1, . . . ,T .



Strict Exogeneity: Examples

When might be a reasonable assumption?
You have to evaluate this on a case-by-case basis.

The panel data machinery we will build all rely on the assumption
of strict exogeneity. Need to think carefully about when it is
reasonable.

Let’s look at some examples.
Based on Wooldridge (2002), Ch. 11.



Strict Exogeneity: Example – Job Training

Typical model for estimating the effects of job training on
subsequent wages:

log(wageit) = θt + Z ′itγ + βprogit + ci + uit ,

i indexes individuals, t indexes time, Zit is some vector of
observable characteristics.

Common approach: T = 2.
T = 0: No one has participated in the program so progi0 = 0
for all i .
T = 1: Some individuals are chosen to participate or choose
to participate.
ci : Worried that individuals enter the program based on
unobservables – “self-selection problem.”



Strict Exogeneity: Example – Job Training

Is strict exogeneity plausible?

Could uit be correlated with progi ,t+1?

Concern: Perhaps individuals select into the program at t + 1
due to random shocks to past wages? If true, strict exogeneity
may not hold.



Strict Exogeneity Example: Lagged Dependent Var.

Consider a simple model for wage dynamics

log(wageit) = β1log(wagei ,t−1) + ci + uit t = 1, . . . ,T .

We are interested in β1 – how persistent are wages?

Let yit = log(wageit). A typical assumption is

E [uit |yi ,t−1, . . . , yi ,0, ci ] = 0.

Combined with first equation =⇒ all dynamics are captured by
the first lag.

Strict exogeneity fails under these assumptions.
At t + 1, the covariate is yit , which is by definition correlated
with uit . So, uit is not uncorrelated with future covariates.
In math,

E [yituit ] = E [u2
it ] > 0.
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Identifying γ2 due to symmetry

Suppose Zi1,Zi2 are symmetric with respect to Ai . That is,

λ1 = λ2.

Then,
E ∗[Ai |1,Zi1,Zi2] = λ0 + λ1(Zi1 + Zi2).

With this assumption, γ2 is identified.

The linear predictors for Yit are

E ∗[Yi1|1,Zi1,Zi2] = (γ1 + γ3λ0) + γ2Zi1 + γ3λ1(Zi1 + Zi2)

E ∗[Yi2|1,Zi1,Zi2] = (γ1 + γ3λ0) + γ2Zi2 + γ3λ1(Zi1 + Zi2)



Identifying γ2 due to symmetry

In particular, γ2 is identified from either linear predictor. BUT, the
latent variable model contains additional restrictions – the
coefficients across the linear predictors are the same.

We can exploit this in our inference on γ2 – we perform system
estimation using the generalized linear predictor. See Lecture
Note 6 for details.

Is symmetry a plausible assumption?
Seems reasonable in the twins example from Lecture Note 6.
Probably not in other applications (wage regressions?)
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Set-Up

The latent variable model is:

Yit = γZit + Ai + Uit

where we’ll now assume that

E [Uit |Zi1, . . . ,ZiT ,Ai ] = E [Uit |Ai ] t = 1, . . . ,T

Referred to as strict exogeneity conditional on Ai in lecture note
6.

Interpretation: Conditional on Ai , Uit is uncorrelated with
Zi1, . . . ,ZiT .
Weaker assumption than the strict exogeneity assumption
given earlier – no longer saying that Ai is exogenous with
respect to Uit .

Individual’s with different fixed unobservables may have a
different types of “shocks” over time.



Set-Up
So, we have that

E [Yit |Zi ,Ai ] = γZit .+ Ai + E [Uit |Ai ].

We assume that

E [Uit |Zi ,Ai ] = φ1t + (1 + φ2t)Ai

and let
E ∗[Ai |1,Zi ] = λ0 + λ1Zi1 + . . .+ λTZiT .

Then, we get that

E [Yit |Zi ,Ai ] = γZit + φ1t + (1 + φ2t)Ai

E ∗[Yit |1,Zi ] = γZit + δ1t + δ2t(λ1Zi1 + . . .+ λTZiT ),

where
δ1t = φ1t + (1 + φ2t)λ0, δ2t = (1 + φ2t)

for t = 1, . . . ,T .



Set-Up

E [Uit |Zi1, . . . ,ZiT ,Ai ] = E [Uit |Ai ] t = 1, . . . ,T

Go back to farm example: Yit = output, Zit = labor input, Ai =
unobserved soil quality, Uit = weather conditions.

Assumption: Something like – “Conditional on soil quality,
there is no selection of labor based on weather in any period”
but “soil quality may be correlated with climate.”

If you go to Wooldridge (2002), this will be set-up as

E [uit |Zi ,Ai ] = 0,

which is a stronger assumption.



First Differences

Assume that φ1t = φ1, φ2t = φ2 are constant over time.
Ai does not have a time-varying effect on Yit and the constant
is not time-varying.

Then,
E [Yit |Zi ,Ai ] = γZit + φ1 + φ2Ai .

And so, we can first-difference to eliminate Ai . We have

E [Yit − Yi ,t−1|Zi ,Ai ] = γ(Zit − Zi ,t−1).

By iterated expectations,

E [Yit − Yi ,t−1|Zi ] = γ(Zit − Zi ,t−1)

We can do inference using the generalized linear predictor.
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Within-Group Estimator/Fixed Effects Estimator

Assume that φ1t = φ1, φ2t = φ2 are constant over time.

Define

Z̄i =
1
T

T∑
t=1

Zit , Ȳi =
1
T

T∑
t=1

Yit .

We can show that

E [Yit − Ȳi |Zi ,Ai ] = γ(Zit − Z̄i )

and by iterated expectations,

E [Yit − Ȳi |Zi ] = γ(Zit − Z̄i ).

We can do inference with the generalized linear predictor.
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Time-Varying Coefficients

Leave the details for you – great exercise in showing that
parameters are identified.

Idea: Allow φ1t , φ2t to vary across periods.
Form best linear predictors of Yit given a constant and Zi for
each period t and write the best linear predictor coefficients in
terms of the structural parameters.
Is the number of reduced form parameters ≥ number of
structural parameters? Can you solve for the structural
parameter of interest from the reduced form parameters?

Quite a general strategy.
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Teacher Effects

Suppose we data on n teachers over T years. The data are {Di}ni=1
with Di = (Yi ,Zi ). Let

Yi =

Yi1
...

YiT

 , Zi =

Z ′i1
...

Z ′iT

 ,

where Yit is a scalar (average test score of class) and Zit is a J × 1
vector of class characteristics (previous test scores, family income,
etc.)

Problem: Predict Yi ,T+1 for a given teacher i if you are told
Zi ,T+1.



Teacher Effects

Start with generalized linear predictor E ∗Φ[Yi |Ri ] = Riβ, where Ri is
T × K matrix constructed from Zi .

Residualize and form Ui = Yi − Riβ so,

Yit = R ′itβ + Uit

If we observe Ri ,t+1, predicting Yi ,t+1 effectively boils down to
predicting Ui ,t+1 – this is the “effect that is not predictable from
class characteristics.”

This prediction of Ui ,T+1 is the teacher effect (i.e.
predictable variation in the component of test scores that is
unpredictable from classroom characteristics).



Teacher Effects

Assume Uit = 0 (R ′it includes a constant) for t = 1, . . . ,T + 1.
Consider

E ∗[Ui ,T+1|Ui1, . . . ,UiT ] = U ′i δ, δ = E [UiU
′
i ]
−1E [UiUi ,T+1].

What can we do:
We can construct β̂ and so, we can form Ûi = Yi − Ri β̂.
We can estimate E [UiU

′
i ] with n−1∑n

i=1 Ûi Û
′
i .

What about E [UiUi ,T+1]? We need to model the covariance
structure of Uit .



Teacher Effects

Suppose that

Uit = Vi + εit t = 1, . . . ,T + 1

where E [Vi ] = E [εit ] = 0 and

E [V 2
i ] = σ2

v , E [ε2it ] = σ2
ε , E [Viεit ] = 0, E [εitεis ] = 0

where the last is for s 6= t.

Vi is the teacher effect and that’s what we are after.



Teacher Effects

With this, we have that

E [UiU
′
i ] = σ2

v ll
′ + σ2

ε IT , E [UiUi ,T+1] = σ2
v l

where l is a T × 1 vector of ones.

You can show that (just algebra)

(σ2
v ll
′ + σ2

ε IT )−1 =
1
σ2
ε

(IT −
σ2
v

σ2
ε + Tσ2

v

ll ′)

Immediately get that

δ =
σ2
v

Tσ2
v + σ2

ε

l



Teacher Effects

So, we immediately get that

E ∗[Ui ,T+1|Ui ] = E ∗[Vi |Ui ] = U ′i δ =
Tσ2

v

Tσ2
v + σ2

ε

Ūi ,

where Ūi = T−1∑T
t=1 Uit . Re-written, this becomes

E ∗[Ui ,T+1|Ui ] =
σ2
v

σ2
v + σ2

ε /T
Ūi .

Again, we have a shrinkage-type estimator.

The lecture note shows how to extend this model to allow for serial
correlation in the εit term.



Estimating Teacher Effects
We can use the generalized linear predictor to impose restrictions
on the covariance structure of the reduced form errors, Ui .

Let Qi be a column vector that is formed by stacking the unique
elements of UiU

′
i – this is a symmetric matrix so we can just focus

on the lower triangular portion.

Qi =



U2
i1

Ui2Ui1
...

UiTUi1
U2
i2

Ui3Ui2
...

UiTUi2
...

U2
iT





Estimating Teacher Effects

The restrictions we placed

Uit = Vi + εit t = 1, . . . ,T + 1

E [V 2
i ] = σ2

v , E [ε2it ] = σ2
ε , E [Viεit ] = 0, E [εitεis ] = 0

implies a particular structure for E [Qi ].



Estimating Teacher Effects

In particular, we have that

E [Qi ] =



σ2
v + σ2

ε

σ2
v
...
σ2
v

σ2
v + σ2

ε

σ2
v
...
σ2
v
...

σ2
v + σ2

ε .





Estimating Teacher Effects
We can write this as

E [Qi ] = A

(
σ2
v

σ2
ε ,

)
where

A =



1 1
0 1
...
0 1
1 1
0 1
...
0 1
...
1 1





Estimating Teacher Effects

We can then plug this into our generalized linear predictor
framework. If we are not willing to assume that the population
satisfies these assumptions about the covariate structure
(reasonable since we are very over-identified), we use a weight
matrix:

E ∗Ω[Qi |A] = Aσ2, σ2 =

(
σ2
v

σ2
ε

)
.

Then,
(
σ2 = (A′ΩA)−1A′ΩE [Qi ]

)



Estimating Teacher Effects

We can implement this by constructing the reduced-form errors

Ûi = Yi − Ri β̂

and forming

σ̂2 = (A′ΩA)−1A′Ω
(
n−1

n∑
i=1

Q̂i

)
.

Then, our estimate of the teacher effect is

Ê ∗[Vi |Ui ] =
σ̂2
v

σ̂2
v + σ̂2

ε /T
Ūi .


	Motivating Story
	Latent Variable Model
	Strict Exogeneity

	Identification Strategies
	Symmetry
	First Differences
	Within-Group Estimator/Fixed Effects Estimator
	Time-Varying Coefficients

	Teacher Effects

