Econ 2120: Section 6
 The Normal Linear Model

Ashesh Rambachan

Fall 2018

Outline

The Normal Linear Model
The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses
F-tests and the Canonical Form
Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

Motivation

These lectures on the Normal-Linear Model are my personal favorite part of this course.

There are so many insights packed into a very simple model.
The techniques we'll cover make the proofs incredibly simple and are generally very useful.

Outline

The Normal Linear Model
The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses
F-tests and the Canonical Form
Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

Outline

The Normal Linear Model
The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses
F-tests and the Canonical Form
Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

The Normal Distribution

$Z \sim N(0,1)$ with density

$$
f(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z^{2}\right)
$$

with $E[Z]=0, V(Z)=E\left[Z^{2}\right]=1$. We say Z is a standard normal distribution.

We write

$$
W \sim N\left(\mu, \sigma^{2}\right)
$$

if $W=\mu+\sigma Z, Z \sim N(0,1)$.

Joint Normal Distribution

If W is $n \times 1$ random vector with a joint normal distribution, we write $W \sim N_{n}(\mu, \Sigma)$, where $\underset{n \times 1}{\mu}$ is the mean vector and $\sum_{n \times n}$ is the cov. matrix.
Claim 3: If $a_{1} \in \mathbb{R}^{m \times m}, a_{2} \in \mathbb{R}^{m}$ and $W \sim N_{n}(\mu, \Sigma)$, then

$$
a_{1} W+a_{2} \sim N\left(a_{1} \mu+a_{2}, a_{1} \sum a_{1}^{\prime}\right) .
$$

Claim 4: If $V \sim N_{n}\left(0, I_{n}\right)$ and q is $n \times n$ orthogonal matrix, then

$$
q V \sim N\left(0, I_{n}\right) .
$$

Why? We have that $q V \sim N\left(0, q I_{n} q^{\prime}\right)=N\left(0, I_{n}\right)$.

Outline

The Normal Linear Model
The Normal Distribution

Set Up - Normal Linear Model

Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses
F-tests and the Canonical Form
Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

Assumptions

Assume random sampling of the data

$$
\left(Y_{i}, Z_{i}\right) \stackrel{i . i . d}{\sim} F, i=1, \ldots, n
$$

where Y_{i} is 1×1.
We additionally assume that

$$
E\left[Y_{i} \mid X_{i}=x_{i}\right]=x_{i}^{\prime} \beta, \text { and } V\left(Y_{i} \mid X_{i}=x_{i}\right)=\sigma^{2}
$$

We assume: (1) conditional expectation is linear; (2) homoskedasticity.

Assumptions

Assume that the conditional distribution of Y_{i} given $Z_{i}=z_{i}$ is normally distributed:

$$
Y_{i} \mid X_{i}=x_{i} \sim N\left(x_{i}^{\prime}, \sigma^{2}\right) \text { for } i=1, \ldots, n
$$

We're making distributional assumption. This will allow us to make progress in finite sample.
To write the model, we define

$$
U_{i}=Y_{i}-x_{i}^{\prime} \beta, \quad V_{i}=U_{i} / \sigma
$$

and so, $V_{i} \mid X=x \sim N(0,1)$ for $i=1, \ldots, n$.
Note that we are conditioning on X, not X_{i}. This holds by the random sampling assumption.

The Normal Linear Model

So, we can write the normal linear model as

$$
\begin{equation*}
Y=x \beta+\sigma V, \quad V \mid X=x \sim N\left(0, I_{n}\right) \tag{1}
\end{equation*}
$$

and

$$
\underset{n \times 1}{Y}=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right), \underset{n \times K}{x}=\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right), \underset{n \times 1}{V}=\left(\begin{array}{c}
V_{1} \\
\vdots \\
V_{n}
\end{array}\right)
$$

Note: The lecture notes introduce the matrix $Z_{n \times n}^{=} z$. Think of this as: We observe z_{i} and apply some fixed transformations to x_{i}.

I will just directly condition on $X=x$ to simplify notation.

Outline

The Normal Linear Model
The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses
F-tests and the Canonical Form
Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

The Canonical Form

We have the normal linear model:

$$
Y=x \beta+\sigma V, \quad V \mid X=x \sim N\left(0, I_{n}\right)
$$

Goal: Rewrite this model as

$$
Y^{*}=\binom{\mu}{0}+\sigma V^{*}, \quad V^{*} \mid X=x \sim N\left(0, I_{n}\right)
$$

where μ is a $K \times 1$ vector of means. This is the canonical form of the normal linear model.

Why? It will REALLY simplify a lot of proofs of classic results.
What's happening when we do that? We are "rotating our data" so that only the first k "rotated observations" are used to estimate b the least squares coefficients.

Linear algebra results I

A $n \times n$ matrix q is orthogonal if $q^{-1}=q^{\prime}$.
If q is orthogonal, so is q^{\prime}.
If q is orthogonal, then $q^{\prime} q=q q^{\prime}=I_{n}$.
Claim 1: Let $a_{1}, a_{2} \in \mathbb{R}^{n}$ and $q \in \mathbb{R}^{n \times n}$ be orthogonal. Then,

$$
\left\langle q a_{1}, q a_{2}\right\rangle=\left\langle a_{1}, a_{2}\right\rangle .
$$

Why? $\left\langle q a_{1}, q a_{2}\right\rangle=\left(q a_{1}\right)^{\prime}\left(q a_{2}\right)=a_{1}^{\prime} q^{\prime} q a_{2}=a_{1}^{\prime} a_{2}$.

Orthogonal matrices

Orthonormal matrices can be thought of rotations.
Example: In \mathbb{R}^{2}, any orthonormal matrix can be represented by

$$
q=\left(\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right)
$$

for some angle α. This rotates a vector x by angle α.
This geometric intuition generalizes to higher dimensions.

Orthogonal matrices and rotation

Idea of the Canonical Form: One particular rotation that we focus on will rotate x so that all the information is in the first k elements.

Design matrix x has rank $K<n$ - its columns span a K-dimensional space.
We will change the basis of the n-dimensional space so that we can represent all elements of x using only the first K basis vectors of the transformed space.

Linear algebra results II

Claim 2: Singular Value Decomposition
If x is $n \times K$ with $n \geq K$, then there is an orthogonal matrix $q \in \mathbb{R}^{n \times n}$, diagonal matrix $d=\operatorname{diag}\left\{d_{1}, \ldots, d_{K}\right\} \in \mathbb{R}^{K \times K}$ with $d_{1} \geq \ldots d_{K} \geq 0$ and an orthogonal matrix $s \in \mathbb{R}^{K \times K}$ such that

$$
x=q_{1} d s^{\prime}
$$

where q_{1} is the $n \times K$ matrix formed by the first K columns of q with

$$
\underset{n \times n}{q}=\left(\begin{array}{cc}
q_{1} & q_{2} \\
n \times K & n \times n-K
\end{array}\right) .
$$

Going to the Canonical Form

Assume that $n>K$ and that the columns of x are linearly independent.
That is, if $c \in \mathbb{R}^{K}$ and $x c=0$, then $c=0$.
Why do we need this? Implies that $x^{\prime} x$ is invertible and so, the matrix
d in the SVD of x is non-singular with $d_{k}>0$ for $k=1, \ldots, K$.
Using SVD, we have $x=q_{1} d s^{\prime}$. Plug this into normal linear model:

$$
Y=\left(q_{1} d s^{\prime}\right) \beta+\sigma V
$$

Multiply both sides by $q^{\prime}=\binom{q_{1}^{\prime}}{q_{2}^{\prime}}$. So,

$$
q^{\prime} Y=\binom{q_{1}^{\prime}}{q_{2}^{\prime}} q_{1} d s^{\prime} \beta+\sigma q^{\prime} V
$$

Going to the Canonical Form

$$
q^{\prime} Y=\binom{q_{1}^{\prime} q_{1}}{q_{2}^{\prime} q_{1}} d s^{\prime} \beta+\sigma q^{\prime} V
$$

Because q is orthogonal, we have that $q_{1}^{\prime} q_{1}=I_{K}, q_{2}^{\prime} q_{1}=0_{(n-K) \times K}$. So,

$$
q^{\prime} Y=\binom{I_{K}}{0} \mu+\sigma q^{\prime} V
$$

where we set $\mu=d s^{\prime} \beta$. Define

$$
Y^{*}=q^{\prime} Y, \quad V^{*}=q^{\prime} V
$$

Note that $V^{*} \mid X=x \sim N\left(0, I_{n}\right)$ and we're done!

The Canonical Form

The canonical form is

$$
\begin{equation*}
Y^{*}=\binom{I_{K}}{0} \mu+\sigma V^{*}, \quad V^{*} \mid X=x \sim N\left(0, I_{n}\right) \tag{2}
\end{equation*}
$$

Note that

$$
Y^{*} \left\lvert\, X=x \sim N\left(\binom{\mu}{0}, \sigma^{2} I_{n}\right)\right.
$$

The Canonical Form

We do some additional rewriting. Let

$$
\begin{aligned}
& Y_{(1)}^{*}=\left(\begin{array}{c}
Y_{1}^{*} \\
\vdots \\
Y_{K}^{*}
\end{array}\right), V_{(1)}^{*}=\left(\begin{array}{c}
V_{1}^{*} \\
\vdots \\
V_{K}^{*}
\end{array}\right) \\
& Y_{(2)}^{*}=\left(\begin{array}{c}
Y_{K+1}^{*} \\
\vdots \\
Y_{n}^{*}
\end{array}\right), V_{(2)}^{*}=\left(\begin{array}{c}
V_{K+1}^{*} \\
\vdots \\
V_{n}^{*}
\end{array}\right) .
\end{aligned}
$$

Write the canonical form as

$$
\begin{align*}
& Y_{(1)}^{*}=\mu+\sigma V_{(1)}^{*} \tag{3}\\
& Y_{(2)}^{*}=\sigma V_{(2)}^{*}, \tag{4}
\end{align*}
$$

where components of $V_{(1)}^{*}, V_{(2)}^{*}$ are i.i.d $N(0,1)$ conditional on $X=x$.

Outline

The Normal Linear Model
The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses
F-tests and the Canonical Form
Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

Least Squares and the Canonical Form

Least squares solves

$$
b=\arg \min _{c}\|Y-x c\|^{2}
$$

Let's write this in terms of the canonical form.
First, note that

$$
\begin{aligned}
\|Y-x c\|^{2} & =\langle Y-x c, Y-x c\rangle \\
& =\left\langle q^{\prime}(Y-x c), q^{\prime}(Y-x c)\right\rangle=\left\|q^{\prime}(Y-x c)\right\|^{2}
\end{aligned}
$$

Second, note that

$$
x=q_{1} d s^{\prime} \Longrightarrow\left\|q^{\prime}(Y-x c)\right\|=\left\|Y^{*}-\binom{d s^{\prime}}{0} c\right\|^{2}
$$

Least Squares and the Canonical Form

So, we have

$$
\begin{aligned}
\left\|\binom{Y_{(1)}^{*}}{Y_{(2)}^{*}}-\binom{d s^{\prime}}{0} c\right\|^{2} & =\left\|\binom{Y_{(1)}^{*}-d s^{\prime} c}{Y_{(2)}^{*}}\right\|^{2} \\
& =\left\|Y_{(1)}^{*}-d s^{\prime} c\right\|^{2}+\left\|Y_{(2)}^{*}\right\|^{2} .
\end{aligned}
$$

The least-squares estimate is simple! It is

$$
\begin{aligned}
b & =\left(d s^{\prime}\right)^{-1} Y_{(1)}^{*} \\
& =\beta+\sigma s d^{-1} V_{(1)}^{*},
\end{aligned}
$$

where we used $\mu=d s^{\prime} \beta$. That is, b only depends on the first K elements of Y^{*}.

This is what we meant when describing the rotation as putting "all the information" on the first K elements.

Least Squares and the Canonical Form

So from

$$
b=\beta+\sigma s d^{-1} V_{(1)}^{*}
$$

we immediately have the following result.
Result \#1:

$$
b \mid X=x \sim N\left(\beta, \sigma^{2} s d^{-2} s^{\prime}\right)
$$

where $x=q_{1} d s^{\prime} \Longrightarrow x^{\prime} x=s d^{2} s^{\prime}$ and $\left(x^{\prime} x\right)^{-1}=s d^{-2} s^{\prime}$.

Sum of Squared Residuals

Using this expression for b, we can write $S S R$:

$$
\begin{aligned}
S S R & =\|Y-x b\|^{2} \\
& =\left\|Y_{(1)}^{*}-d s^{\prime} b\right\|^{2}+\left\|Y_{(2)}^{*}\right\|^{2}=\left\|Y_{(2)}^{*}\right\|^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\left\|Y_{(2)}^{*}\right\|^{2} & =\sigma^{2}\left\|V_{(2)}^{*}\right\|^{2} \\
& =\sigma^{2} \sum_{i=K+1}^{n}\left(V_{i}^{*}\right)^{2},
\end{aligned}
$$

where each V_{i}^{*} is i.i.d. $N(0,1)$ conditional on $X=x$.

Sum of Squared Residuals

So from,

$$
S S R=\sigma^{2} \sum_{i=K+1}^{n}\left(V_{i}^{*}\right)^{2}
$$

we immediately have the following result.
Result \#2:

$$
S S R \mid X=x \sim \sigma^{2} \cdot \operatorname{Chi}^{2}(n-K)
$$

and

$$
S S R \Perp b \mid X=x
$$

Moreover, we immediately have an unbiased estimator of σ^{2} :

$$
\hat{\sigma}^{2}=\frac{S S R}{n-K}, E\left[\hat{\sigma}^{2} \mid X=x\right]=\sigma^{2}
$$

using that the expectation of a Chi-squared r.v. is its degrees of freedom.

Outline

The Normal Linear Model
The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses
F-tests and the Canonical Form
Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

Confidence Intervals

As in Note 4, we construct Cl's for a linear combo of coefficients

$$
I^{\prime} \beta=\sum_{j=1}^{K} I_{j} \beta_{j} .
$$

The standard error is

$$
S E=\left[\hat{\sigma}^{2} I^{\prime}\left(x^{\prime} x\right)^{-1} I\right]^{1 / 2}
$$

where $\hat{\sigma}^{2}=\frac{S S R}{n-K}$
We consider our usual t-statistic

$$
t=\frac{I^{\prime}(b-\beta)}{S E}
$$

Confidence Intervals

Definition: If $W S$ with $W \sim N(0,1), S \sim C h i^{2}(m)$, then

$$
\frac{W}{(S / m)^{1 / 2}} \sim t(m)
$$

Claim 5:

$$
\left.\frac{I^{\prime}(b-\beta)}{S E} \right\rvert\, X=x \sim t(n-K)
$$

Why? We re-write by dividing by σ^{2} / σ^{2} and substituting in for $\hat{\sigma}^{2}$. We get

$$
\left.\frac{I^{\prime}(b-\beta)}{\left[\sigma^{2} I^{\prime}\left(x^{\prime} x\right)^{-1} /\right]^{1 / 2}} /\left[\frac{S S R}{\sigma^{2}(n-K)}\right] \right\rvert\, X=x \sim \frac{N(0,1)}{\left[\frac{C h i^{2}(n-K)}{n-K}\right]^{1 / 2}} \sim t(n-K)
$$

So, we can construct confidence intervals by just substituting in the critical values for a $t(n-K)$ distribution.

These will be exact, finite-sample confidence intervals - NOT asymptotic Cls.

Confidence Intervals

Let c denote the 97.5 quantile of a $t(n-K)$ distribution. Then, our 95% confidence interval is

$$
P\left(I^{\prime} b-c \cdot S E \leq I^{\prime} \beta \leq I^{\prime} b+c \cdot S E \mid X=x\right)=0.95 .
$$

Since the probability does not depend on x, it holds unconditionally as well. So,

$$
P\left(I^{\prime} b-c \cdot S E \leq I^{\prime} \beta \leq I^{\prime} b+c \cdot S E\right)=0.95 .
$$

Confidence Ellipses

Now suppose we wish to obtain confidence regions for multiple linear combinations of coefficients.
L is an $r \times K$ matrix. So $L \beta$ is $r \times 1$. We want to construct a region for $L \beta$.
From the conditional distribution for b, we have that

$$
L b \mid X=x \sim N\left(L \beta, \sigma^{2} L\left(x^{\prime} x\right)^{-1} L^{\prime}\right)
$$

Define our estimator of the covariance matrix as

$$
\hat{\operatorname{Cov}}(L b)=\hat{\sigma}^{2} L\left(x^{\prime} x\right)^{-1} L^{\prime}, \quad \hat{\sigma}^{2}=\frac{S S R}{n-K}
$$

Confidence Ellipses: Useful Probability Results

Claim 6: If $W \sim N_{r}(\mu, \Sigma)$, then

$$
(W-\mu)^{\prime} \Sigma^{-1}(W-\mu) \sim C h i^{2}(r)
$$

Definition: If $S_{1} \Perp S_{2}$ with $S_{1} \sim C h i^{2}(r)$ and $S_{2} \sim C h i^{2}(m)$, then

$$
\frac{S_{1} / r}{S_{2} / m} \sim F(r, m)
$$

The ratio follows an F-distribution with degrees of freedom r, m.

Confidence Ellipses: Usual F-stat

Claim 7: Conditional on $X=x$,

$$
(L b-L \beta)^{\prime}[\hat{\operatorname{Cov}}(L b)]^{-1}(L b-L \beta) / r \sim F(r, n-K)
$$

Why? Again divide by σ^{2} / σ^{2}. We have

$$
\begin{aligned}
\left.\frac{(L b-L \beta)^{\prime}\left[\sigma^{2} L\left(x^{\prime} x\right)^{-1} L^{\prime}\right]^{-1}(L b-L \beta) / r}{S S R /\left[\sigma^{2}(n-K)\right]} \right\rvert\, X=x & \sim \frac{C h i^{2}(r) / r}{C h i^{2}(n-K) /(n-K)} \\
& \sim F(r, n-K)
\end{aligned}
$$

Outline

The Normal Linear Model
The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses
F-tests and the Canonical Form
Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

Canonical Form of the F-Test

We just covered the F-test... Why are we covering it again?
We will formulate the F-test in the canonical form of the normal linear model.

This will allow us easily formulate the F-statistic as the difference of the R^{2} in a "restricted" and "unrestricted" regressions.
This will also serve as a launching point for our discussion of dominating least squares.

The Problem: We have a bunch of regressors and are only interested in testing the joint significance of some subset.
E.g. We include a set of controls in our regression and are only interested in testing whether the coefficient on the treatment of interest is significant.
E.g. Interested in only testing the coefficient on education in a regression of log wages on education with some additional controls.

Canonical Form of the F-test - Set up

Consider the normal linear model

$$
Y=x \beta+\sigma V, V \mid x \sim N\left(0, I_{n}\right)
$$

where x is $n \times K$. Partition the covariates into two sets

$$
\begin{equation*}
Y=x_{1} \beta_{1}+x_{2} \beta_{2}+\sigma V, V \mid x \sim N\left(0, I_{n}\right) \tag{5}
\end{equation*}
$$

where x_{1} is $n \times K_{1}$ and x_{2} is $n \times K_{2}$.
Goal: Test $H_{0}: \beta_{2}=0$.
We begin by re-writing the normal linear model into a canonical form that partitions μ into subvectors μ_{1}, μ_{2} and then we can simply test $\mu_{2}=0$.

Canonical Form of the F-test - Set up

First: Residualize x_{2}.
Let \tilde{x}_{2} be the residual from projecting x_{2} onto x_{1}. So, we have

$$
\tilde{x}_{2}=x_{2}-x_{1} t, x_{1}^{\prime} \tilde{x}_{2}=0
$$

Since $x_{2}=\tilde{x}_{2}+x_{1} t$, we plug this into the normal linear model to get

$$
x \beta=x_{1} \alpha+\tilde{x}_{2} \beta, \alpha=\beta_{1}+t \beta_{2}
$$

Canonical Form of the F-test - Set up

Second: Construct SVDs
Let $\operatorname{rank}\left(x_{1}\right)=h \leq K_{1}$. The SVD of x_{1} is

$$
x_{1}=q_{1} d_{1} s_{1}^{\prime},
$$

where q_{1} is $N \times h$ with $q_{1}^{\prime} q_{1}=q_{1} q_{1}^{\prime}=I_{h}, d_{1}$ is $h \times h$ diagonal matrix with positive elements on the diagonal, s_{1} is $K_{1} \times h$ with $s_{1}^{\prime} s_{1}=s_{1} s_{1}^{\prime}=I_{h}$.
Let $\operatorname{rank}\left(\tilde{x}_{2}\right)=r \leq K_{2}$. The SVD of \tilde{x}_{2} is

$$
\tilde{x}_{2}=q_{2} d_{2} s_{2}^{\prime},
$$

where q_{2} is $N \times r$ with $q_{2}^{\prime} q_{2}=q_{2} q_{2}^{\prime}=I_{r}, d_{2}$ is $h \times h$ diagonal matrix with positive elements on the diagonal, s_{2} is $K_{2} \times r$ with $s_{2}^{\prime} s_{2}=s_{2} s_{2}^{\prime}=I_{r}$.

Canonical Form of the F-test - Set up

Since \tilde{x}_{2} is orthogonal to x_{1}, we have that

$$
0=\tilde{x}_{2}^{\prime} x_{1}=s_{2} d_{2} q_{2}^{\prime} q_{1} d_{1} s_{1}^{\prime} .
$$

Pre-multiplying by $d_{2}^{-1} s_{2}^{\prime}$ and post-multiplying by $s_{1} d_{1}^{-1}$, we get that

$$
0=q_{2}^{\prime} q_{1} .
$$

So q_{2} is orthogonal to q_{1}.
Consider the linear subspace spanned by the columns of ($\left.\begin{array}{ll}q_{1} & q_{2}\end{array}\right)$. This has dimension $h+r \leq K$ and its orthogonal complement $\left(\begin{array}{ll}q_{1} & q_{2}\end{array}\right)^{\perp}$ has dimension $n-h-r$.

Define an $n \times(n-h-r)$ matrix q_{3} whose columns form an orthonormal basis of $\left(\begin{array}{ll}q_{1} & q_{2}\end{array}\right)^{\perp}$. So

$$
q_{3}^{\prime} q_{1}=0, \quad q_{3}^{\prime} q_{2}=0, \quad q_{3}^{\prime} q_{3}=I_{n-h-r} .
$$

Canonical Form of the F-test - Set up

Third: Form $q=\left(\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right)$ and proceed to the canonical form of the normal linear model.

We have

$$
\begin{aligned}
Y & =x_{1} \alpha+\tilde{x}_{2} \beta_{2}+\sigma V \\
q^{\prime} Y & =\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)\left(q_{1} d_{1} s_{1}^{\prime} \alpha+q_{2} d_{2} s_{2}^{\prime} \beta_{2}\right)+\sigma q^{\prime} V \\
Y^{*} & =\left(\begin{array}{c}
I_{h} \\
0 \\
0
\end{array}\right) d_{1} s_{1}^{\prime} \alpha+\left(\begin{array}{l}
0 \\
I_{r} \\
0
\end{array}\right) d_{2} s_{2}^{\prime} \beta_{2}+\sigma V^{*} \\
Y^{*} & =\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
0
\end{array}\right)+\sigma V^{*}, \quad V^{*} \mid X=x \sim N\left(0, I_{n}\right)
\end{aligned}
$$

where $Y^{*}=q^{\prime} Y, V^{*}=q^{\prime} V, \mu_{1}=d_{1} s_{1}^{\prime} \alpha, \mu_{2}=d_{2} s_{2}^{\prime} \beta_{2}$.

Canonical Form of the F-test - Set up

We're done! We have

$$
\begin{array}{r}
Y_{(1)}^{*}=\mu_{1}+\sigma V_{(1)}, \\
Y_{(2)}^{*}=\mu_{2}+\sigma V_{(2)}, \\
Y_{(3)}^{*}=\sigma V_{(3)},
\end{array}
$$

where $Y_{(1)}^{*}$ is the first h elements, $Y_{(2)}^{*}$ is the next r elements, and $Y_{(3}^{*}$ is remaining $n-h-r$ elements of Y^{*}. Moreover, conditional on $X=x$, the elements of $V_{(1)}^{*}, V_{(2)}^{*}, V_{(3)}^{*}$ are all i.i.d. $N(0,1)$.

Canonical Form of the F-test - The F-Stat

We will now construct the F-stat in terms of SSR of restricted (just using x_{1}) and unrestricted (using both x_{1}, x_{2}) regressions.
Define

$$
S S R_{r}=\min _{c \in \mathbb{R}^{h}}\left\|Y-x_{1} c\right\|^{2}
$$

Note that

$$
\begin{aligned}
\left\|Y-x_{1} c\right\|^{2} & =\left\|q^{\prime}\left(Y-x_{1} c\right)\right\|=\left\|Y^{*}-\left(\begin{array}{c}
I_{h} \\
0 \\
0
\end{array}\right) d_{1} s_{1}^{\prime} c\right\|^{2} \\
& =\left\|Y_{(1)}^{*}-d_{1} s_{1}^{\prime} c\right\|^{2}+\left\|Y_{(2)}\right\|^{2}+\left\|Y_{(3)}\right\|^{2}
\end{aligned}
$$

So,

$$
S S R_{r}=\left\|Y_{(2)}\right\|^{2}+\left\|Y_{(3)}\right\|^{2}
$$

Canonical Form of the F-test - The F-Stat

Similarly, define

$$
S S R_{u}=\min _{c_{1} \in \mathbb{R}^{h}, c_{2} \in \mathbb{R}^{r}}\left\|Y-x_{1} c_{1}-\tilde{x}_{2} c_{2}\right\|^{2}
$$

As before, we can show

$$
S S R_{u}=\left\|Y_{(3)}\right\|^{2}
$$

with least-squares estimates

$$
\hat{\alpha}=s_{1} d_{1}^{-1} Y_{(1)}^{*}, \quad b_{2}=s_{2} d_{2}^{-1} Y_{(2)}^{*}
$$

and we can recover b_{1} as $b_{1}=\hat{\alpha}-t b_{2}$, where $t=s_{1} d_{1}^{-1} q_{1}^{\prime} x_{2}$ (linear regresion algebra).

Canonical Form of the F-Test - The F-stat

Consider the following test statistic for the null, $\beta_{2}=0$:

$$
F=\frac{\left(S S R_{r}-S S R_{u}\right) / r}{S S R_{u} /(n-h-r)}
$$

Claim: Under $H_{0}: \beta_{2}=0$,

$$
F \mid X=x \sim F_{r, n-h-r} .
$$

See notes for simple argument.

Outline

The Normal Linear Model

The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses F-tests and the Canonical Form

Dominating Least Squares

The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

Dominating Least Squares

Machine learning all the rage today... Techniques provide high quality predictions in high-dimensional settings.

One key idea: Shrinkage - shrink coefficients towards zero. This produces more biased but lower variance predictions. Provided this tradeoff between bias and variance is "tuned" correctly, this can greatly improves prediction accuracy
Old result: James-Stein (61). We can show that least-squares is dominated by a shrinkage estimator in the normal linear model.

Provides a closed form expression for the optimal level of shrinkage where the shrinkage factor will depend on the data.

Outline

The Normal Linear Model

The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses F-tests and the Canonical Form

Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

The Value of Shrinkage

Consider the canonical form

$$
\begin{aligned}
& Y_{(1)}^{*}=\mu+\sigma V_{(1)}^{*}, \\
& Y_{(2)}^{*}=\sigma V_{(2)}^{*} .
\end{aligned}
$$

Goal: Construct an accurate estimator $\hat{\mu}$ of μ, where accurate means low MSE

$$
E\left[\sum_{k=1}^{K}\left(\hat{\mu}_{k}-\mu_{k}\right)^{2}\right.
$$

Shrinking our estimator towards zero will produce biased estimator but may lead to a large decrease in the variance of the estimator. This could lead to a net large decrease in the MSE.
E.g. $\hat{\mu}_{L S}=Y_{(1)}^{*}$, and a shrinkage estimator could be
$\hat{\mu}_{\text {shrinkage }}=c \cdot \hat{\mu}_{L S}$ for $0 \leq c \leq 1$.

The Bias-Variance Tradeoff

Recall:

$$
V(\hat{\mu})=E\left[(\hat{\mu}-E[\hat{\mu}])(\hat{\mu}-E[\hat{\mu}])^{\prime}\right]=E\left[\hat{\mu} \hat{\mu}^{\prime}\right]-E[\hat{\mu}] E[\hat{\mu}]^{\prime}=V .
$$

Bias is $E[\hat{\mu}-\mu]=b$.
Consider the MSE objective. With some algebra, we can write

$$
\begin{aligned}
E\left[(\hat{\mu}-\mu)^{\prime}(\hat{\mu}-\mu)\right] & =E\left[(\hat{\mu}-E[\hat{\mu}]+E[\hat{\mu}]-\mu)^{\prime}(\hat{\mu}-E[\hat{\mu}]+E[\hat{\mu}]-\mu)\right] \\
& =E\left[\left(\hat{\mu}-E[\hat{\mu})^{\prime}(\hat{\mu}-E[\hat{\mu})]\right.\right. \\
& +2 E\left[(\hat{\mu}-E[\hat{\mu}])^{\prime}(E[\hat{\mu}]-\mu)\right] \\
& +E\left[(E[\hat{\mu}]-\mu)^{\prime}(E[\hat{\mu}]-\mu)\right] \\
& =E\left[\left(\hat{\mu}-E[\hat{\mu})^{\prime}(\hat{\mu}-E[\hat{\mu})]+E\left[(E[\hat{\mu}]-\mu)^{\prime}(E[\hat{\mu}]-\mu)\right]\right.\right. \\
& =E\left[\left(\hat{\mu}-E[\hat{\mu})^{\prime}(\hat{\mu}-E[\hat{\mu})]+b^{\prime} b .\right.\right.
\end{aligned}
$$

The Bias-Variance Tradeoff

We'll now rewrite the first-term, $E\left[\left(\hat{\mu}-E[\hat{\mu})^{\prime}(\hat{\mu}-E[\hat{\mu})]\right.\right.$. It is a scalar and so, we can write

$$
\begin{aligned}
E\left[\left(\hat{\mu}-E[\hat{\mu})^{\prime}(\hat{\mu}-E[\hat{\mu})]\right.\right. & =E\left[\operatorname { T r a c e } \left(\left(\hat{\mu}-E[\hat{\mu})^{\prime}(\hat{\mu}-E[\hat{\mu}))\right]\right.\right. \\
& =E\left[\operatorname { T r a c e } \left(\left(\hat{\mu}-E[\hat{\mu})\left(\hat{\mu}-E[\hat{\mu})^{\prime}\right)\right]\right.\right. \\
& =\operatorname{Trace}\left(E \left[\left(\hat{\mu}-E[\hat{\mu})\left(\hat{\mu}-E[\hat{\mu})^{\prime}\right]\right)\right.\right. \\
& =\operatorname{Trace}(V),
\end{aligned}
$$

where we used that $\operatorname{Trace}(A B)=\operatorname{Trace}(B A)$ and that we can exchange the trace with the expectation because both are linear.
So, we have that our MSE is

$$
M S E=E\left[(\hat{\mu}-\mu)^{\prime}(\hat{\mu}-\mu)\right]=\operatorname{Trace}(V)+b^{\prime} b
$$

where the first term depends on the variance of our estimator and the second depends on the bias.

The Bias-Variance Tradeoff

This is a general decomposition for MSE. For scalar case,

$$
\left.M S E=E[(\hat{\mu})-\mu)^{2}\right]=V(\hat{\mu})+\operatorname{Bias}(\hat{\mu})^{2} .
$$

Now lets compare the least-squares estimator and the shrinkage estimator.
Least-squares is unbiased and $V\left(\hat{\mu}_{L S}\right)=V\left(Y_{(1)}^{*}\right)=\sigma^{2} I_{K}$. So,

$$
E\left[\left(\hat{\mu}_{L S}-\mu\right)^{\prime}\left(\hat{\mu}_{L S}-\mu\right)\right]=\sigma^{2} K
$$

For the shrinkage estimator, we have $V\left(\hat{\mu}_{\text {shrinkage }}\right)=c^{2} \sigma^{2} I_{K}$ and $E\left[\hat{\mu}_{\text {shrinkage }}-\mu\right]=(c-1) \mu$. So,

$$
E\left[\left(\hat{\mu}_{\text {shrinkage }}-\mu\right)^{\prime}\left(\hat{\mu}_{\text {shrinkage }}-\mu\right)\right]=c^{2} \sigma^{2} K+(1-c)^{2} \mu^{\prime} \mu
$$

Shrinkage in High-Dimensional Problems

Note that the MSE of the least-squares estimator grows linearly with dimension K.

For high-dimensional (large K) problems, this produces poor predictions. In jargon, the least-squares estimator will be too high variance and will "overfit."

For the right choice of the shrinkage parameter, we may be able to produce an estimator with a lower MSE than least-squares.

If we minimize the MSE of the shrinkage estimator with respect to c, we see that

$$
c^{*}=\frac{\mu^{\prime} \mu}{\sigma^{2} K+\mu^{\prime} \mu}<1
$$

and so, we could in fact always improve the MSE of our estimator with shrinkage. But this shrinkage rate depends on unknown population parameters. Is there a feasible shrinkage rate that dominates least squares?

Outline

The Normal Linear Model

The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses F-tests and the Canonical Form

Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

The Decision Problem

Consider the canonical form of the F-test

$$
\begin{aligned}
Y_{(1)}^{*} & =\mu_{1}+\sigma V_{(1)}^{*}, \\
Y_{(2)}^{*} & =\mu_{2}+\sigma V_{(2)}^{*} \\
Y_{(3)}^{*} & =\sigma V_{(3)}^{*} .
\end{aligned}
$$

The parameter space is

$$
\Theta=\mathbb{R}^{h} \times \mathbb{R}^{r} \times \mathbb{R}_{+}=\left\{\left(\mu_{1}, \mu_{2}, \sigma\right)\right\}
$$

The problem: We want to estimate μ_{2} (e.g. we want to prediction $Y_{(2)}^{*}$). We specify a loss function:

$$
L(\theta, a)=\left\|a-\mu_{2}\right\|^{2}
$$

where a is an action (estimate of μ_{2}).

The Decision Rule

A decision rule d specifies an action as a function of the data, $\hat{m} u_{2}=d\left(Y^{*}\right)$. The risk function R gives the expected loss of d under the likelihood, P_{θ}

$$
R(\theta, d)=E_{\theta}\left[L\left(\theta, d\left(Y^{*}\right)\right)\right] .
$$

We want to choose decision rules that will minimize our risk/expected loss.

Shrinkage Estimator

The least-squares estimator for μ_{2} is simply

$$
\hat{\mu}_{2, L S}=Y_{(2)}^{*}
$$

Consider the shrinkage estimator

$$
\hat{\mu}_{2, c}=c \cdot \hat{\mu}_{2, L S}=c \cdot Y_{(2)}^{*}
$$

for $0 \leq c \leq 1$. What is the risk of this? We have that

$$
\begin{aligned}
R\left(\theta, \hat{\mu}_{2, c}\right) & =E_{\theta}\left\|c Y_{(2)}^{*}-\mu_{2}\right\|^{2} \\
& =E_{\theta}\left\|c\left(\mu_{2}+\sigma V_{(2)}^{*}\right)-\mu_{2}\right\| \\
& =(1-c)^{2}\left\|\mu_{2}\right\|^{2}+c^{2} r \sigma^{2}
\end{aligned}
$$

We'd want to choose c to minimize this. However, this is infeasible because θ is unknown. What do we do?

Outline

The Normal Linear Model
The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses F-tests and the Canonical Form

Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

Stein's Unbiased Estimate of Risk (SURE)

We construct a statistic whose expectation under P_{θ} is $R\left(\theta, \hat{\mu}_{2, c}\right)$. We then minimize this unbiased estimate of the risk with respect to c.

This statistic is known as Stein's Unbiased Estimate of Risk or SURE.
How do we get there? First, consider

$$
E_{\theta}\left\|Y_{(2)}^{*}\right\|^{2}=\left\|\mu_{2}+\sigma V_{(2)}^{*}\right\|^{2}=\left\|\mu_{2}\right\|^{2}+r \sigma^{2} .
$$

We have an unbiased estimator of $\sigma^{2}, \hat{\sigma}^{2}=\frac{S S R}{n-K}$, where $K=h+r$. So,

$$
\left\|Y_{(2)}^{*}\right\|^{2}-r \hat{\sigma}^{2}
$$

is an unbiased estimator of $\left\|\mu_{2}\right\|$.

Stein's Unbiased Estimate of Risk (SURE)

Our unbiased estimate of risk is simply a linear combination of the unbiased estimates of $\left\|\mu_{2}\right\|^{2}$ and σ^{2}. It is

$$
\begin{aligned}
Q_{c} & =(1-c)^{2}\left[\left\|Y_{(2)}^{*}\right\|^{2}-r \hat{\sigma}^{2}\right]+c^{2} r \hat{\sigma}^{2} \\
& =(1-c)^{2}\left[\left\|Y_{(2)}^{*}\right\|^{2}-r \frac{S S R}{n-K}\right]+c^{2} r \frac{S S R}{n-K}
\end{aligned}
$$

where $K=h+r$.
The SURE estimator is the shrinkage estimator that chooses c to minimize SURE. That is,

$$
\hat{c}_{S U R E}=\arg \min _{0 \leq c \leq 1} Q_{c}
$$

If the minimizer is negative, we set $c=0$.

SURE Estimator

Taking the first-order condition, we immediately see that

$$
\hat{\text { C}} \text { SURE }=\left(1-\frac{S S R}{\left\|Y_{(2)}^{*}\right\|} \frac{r}{n-h-r}\right)_{+} .
$$

But, we just had that

$$
F=\frac{\left(S S R_{r}-S S R_{u}\right) / r}{S S R_{u} / n-h-r}=\frac{\left\|Y_{(2)}^{*}\right\|}{S S R} \frac{n-h-r}{r} .
$$

So,

$$
\begin{aligned}
\hat{c}_{S U R E} & =\left(1-\frac{1}{F}\right)_{+} \\
\hat{\mu}_{2, s} & =\left(1-\frac{1}{F}\right)_{+} Y_{(2)}^{*} .
\end{aligned}
$$

This is the SURE Estimator.

Outline

The Normal Linear Model

The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses F-tests and the Canonical Form

Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)
Prediction
Preserving our unbiased estimator

James \& Stein (61)

Theorem: James \& Stein (61)
If $r \geq 3$ and if c satisfies

$$
0<c<\frac{2(r-2)}{n-h-r+2}
$$

then

$$
\hat{\mu}_{2, \text { shrinkage }}=\left(1-c \frac{\left\|Y_{(3)}^{*}\right\|^{2}}{\left\|Y_{(2)}^{*}\right\|^{2}}\right) \hat{\mu}_{2, L S}
$$

dominates the least-squares estimator

$$
R\left(\theta, \hat{\mu}_{2, \text { shrinkage }}\right)<R\left(\theta, \hat{\mu}_{2, L S}\right) \forall \theta \in \Theta .
$$

$R\left(\theta, \hat{\mu}_{2, \text { shrinkage }}\right)$ is minimized at $c^{*}=\frac{r-2}{n-h-r+2}$.

James \& Stein (61)

Theorem: James \& Stein (61) - continued.
The positive-part estimator

$$
\hat{\mu}_{\text {shrinkage }}^{+}=\left(1-c \frac{\left\|Y_{(3)}^{*}\right\|^{2}}{\left\|Y_{(2)}^{*}\right\|^{2}}\right)_{+} \hat{\mu}_{2, L S}
$$

dominates $\hat{\mu}_{L S}$ under the same conditions and dominates $\hat{\mu}_{\text {shrinkage }}$.

Apply James \& Stein (61) to our results

Our shrinkage estimator $\hat{\mu}_{2, s}=\left(1-\frac{r}{n-h-r}\left\|\frac{\|(3)}{*(2)}\right\|^{*} \|^{2}\right)+\hat{\mu}_{L S}$ set $c=\frac{r}{n-h-r}$.
So, it dominates least squares if

$$
\frac{r}{n-h-r}<\frac{2(r-2)}{n-h-r+2}
$$

A sufficient condition for this $r \geq 5, n-h-r>10$.

Outline

The Normal Linear Model

The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses F-tests and the Canonical Form

Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE)
James \& Stein (61)

Prediction

Preserving our unbiased estimator

Prediction and Shrinkage

We will now restate the results in the context of prediction.
This may be a more intuitive presentation but it is the same fundamental idea. By shrinking our predictions, we are introducing some bias in exchange for a large reduction in variance.
The Problem: We observe $\underset{n \times 1}{Y}$, which follows the normal linear model

$$
Y \mid X=x \sim N\left(x \beta, \sigma^{2} I_{n}\right)
$$

We wish to predict the value of an independent draw $\underset{n \times 1}{\tilde{Y}}$ from the same distribution

$$
\tilde{Y} \mid X=x \sim N\left(x \beta, \sigma^{2} I_{n}\right)
$$

where $\theta=(\beta, \sigma) \in \mathbb{R}^{K} \times \mathbb{R}_{+}$. Assume $Y \Perp \tilde{Y} \mid X=x$.

Prediction: The Decision Problem

The action a is a point in \mathbb{R}^{n} - it is a prediction for \tilde{Y}.
The loss function is

$$
\begin{aligned}
L(\theta, a) & =E_{\theta}\left[\sum_{j=1}^{n}\left(\tilde{Y}_{j}-a_{j}\right)^{2}\right] \\
& =E_{\theta}\left[\|\tilde{Y}-a\|^{2}\right] \\
& =E_{\theta}\left[\|x \beta+\sigma \tilde{V}-a\|^{2}\right] \\
& =\|x \beta-a\|^{2}+n \sigma^{2}
\end{aligned}
$$

The decision rule specifies an action as a function of the observation Y. The risk function is

$$
R(\theta, d)=E_{\theta}[L(\theta, d(Y))] .
$$

Shrinkage and Prediction

As before, we partition the regressors into two groups

$$
x \beta=x_{1} \beta_{1}+x_{2} \beta_{2}=x_{1} \alpha+\tilde{x}_{2} \beta_{2}
$$

where $\tilde{x}_{2}=x_{2}-x_{1} t, x_{1}^{\prime} \tilde{x}_{2}=0, \alpha=\beta_{1}+t \beta_{2}$. We will consider a prediction function that just shrinks the coefficients on x_{2} (i.e. \tilde{x}_{2}).
The least-squares decision rule is

$$
d_{L S}(Y)=x b=x_{1} \hat{\alpha}+\tilde{x}_{2} b_{2}
$$

with $\left(x_{1}^{\prime} x_{1}\right) \hat{\alpha}=x_{1}^{\prime} Y,\left(\tilde{x}_{2}^{\prime} \tilde{x}_{2}\right) b_{2}=\tilde{x}_{2}^{\prime} Y$.

Shrinkage and Prediction

We shrink the least squares estimate b_{2} with

$$
\hat{\beta}_{2, S}=\left(1-\frac{1}{F}\right)_{+} b_{2}
$$

and consider the decision rule

$$
d_{S}(Y)=x_{1} \hat{\alpha}+\tilde{x}_{2} \hat{\beta}_{2, S}
$$

Note that

$$
d_{S}(Y)=w d_{L S}(Y)+(1-w) x_{1} \hat{\alpha} \quad w=\left(1-\frac{1}{F}\right)_{+}
$$

This will be useful later.

Comparing the Risk Functions

We will translate back into the canonical form to simplify the risk functions. First, for the shrinkage prediction, we have

$$
\begin{aligned}
R\left((\beta, \sigma), d_{S}\right) & =E_{\theta}\left[\left\|q^{\prime}\left[x_{1}(\hat{\alpha}-\alpha)+\tilde{x}_{2}\left(\hat{\beta}_{2, S}-\beta_{2}\right)\right]\right\|\right]+n \sigma^{2} \\
& =E_{\theta}\left[\left\|Y_{(1)}^{*}-\mu_{1}\right\|^{2}\right]+E_{\theta}\left[\left\|\hat{\mu}_{2, S}-\mu_{2}\right\|^{2}\right]+n \sigma^{2}
\end{aligned}
$$

Next, for least-squares

$$
\begin{aligned}
R\left((\beta, \sigma), d_{L S}\right) & =E_{\theta}\left[\left\|Y_{(1)}^{*}-\mu_{1}\right\|^{2}\right]+E_{\theta}\left[\left\|Y_{(2)^{2, S}}^{*}-\mu_{2}\right\|^{2}\right]+n \sigma^{2} \\
& =(n+h+r) \sigma^{2} .
\end{aligned}
$$

So, $R\left(\theta, d_{S}\right)<R\left(\theta, d_{L S}\right)$ for all θ if and only if

$$
E_{\theta}\left[\left\|\hat{\mu}_{2, S}-\mu_{2}\right\|^{2}\right]<r \sigma^{2} .
$$

A sufficient condition (as before) is $r \geq 5, n-h-r>10$.

Outline

The Normal Linear Model

The Normal Distribution
Set Up - Normal Linear Model
Canonical Form of the Normal Linear Model
Least Squares and the Canonical Form
Confidence Intervals \& Ellipses F-tests and the Canonical Form

Dominating Least Squares
The Bias-Variance Tradeoff
The Decision Problem
Stein's Unbiased Estimate of Risk (SURE) James \& Stein (61)
Prediction
Preserving our unbiased estimator

Preserving our unbiased estimator

Suppose we have

$$
Y=x_{1} \beta_{1}+x_{2} \beta_{2}+\sigma V, V \mid X=x \sim N\left(0, I_{n}\right)
$$

We are interested in the coefficients on x_{1}, β_{1}.
E.g. x_{1} contains our treatment of interest and x_{2} contains a large set of additional controls.
We wish to apply our shrinkage estimator to β_{2} but then, if we used that to recover an estimate of β_{1}, it will be biased. That is,

$$
\hat{\beta}_{1, S}=\hat{\alpha}-t \hat{\beta}_{2, S}
$$

is biased for β_{1} in general. How can we preserve an unbiased estimator for β_{1} but still maintain the dominance result for the prediction MSE?

Preserving our unbiased estimator - Set Up

The notation here is confusing so pay attention.
Suppose we have some set of covariates p and we want an unbiased estimator for the coefficients on p. That is, we are after an unbiased estimator of β_{1} in

$$
Y=p \beta_{1}+x_{2} \beta_{2}+\sigma V
$$

In other words, we wish to preserve the least-squares estimate b_{1}, which satisfies

$$
\begin{equation*}
\left(p-\operatorname{Proj}\left(p \mid x_{2}\right)\right)^{\prime}\left[Y-\left(p-\operatorname{Proj}\left(p \mid x_{2}\right) b_{1}\right]=0\right. \tag{6}
\end{equation*}
$$

by residual regression.

Preserving our unbiased estimator - Set Up

Construct the fitted values from the least-squares projection of p on x_{2}, where

$$
x_{2}^{\prime}(p-\hat{p})=0, \quad \hat{p}^{\prime}(p-\hat{p})=0
$$

Now define

$$
x_{1}=\left(\begin{array}{ll}
p & \hat{p}
\end{array}\right)
$$

and so,

$$
x=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right) .
$$

The least squares projection of Y on x has fitted value

$$
x b=p b_{11}+\hat{p} b_{12}+x_{2} b_{2}
$$

and we want to preserve the coefficient vector b_{11} and thereby obtain an unbiased estimator of $\beta_{1,1}$.

Preserving an unbiased estimator of $b_{1,1}$

Consider the shrinkage estimator. It produces predictions

$$
\begin{aligned}
d_{S}(Y) & =x_{1} \hat{\beta}_{1, S}+x_{2} \hat{\beta}_{2, S} \\
& =x_{1} \hat{\alpha}+\tilde{x}_{2} \hat{\beta}_{2, S} .
\end{aligned}
$$

Recall that

$$
d_{S}(Y)=w d_{L S}(Y)+(1-w) x_{1} \hat{\alpha}, \quad w=\left(1-\frac{1}{F}\right)_{+}
$$

So, we have that

$$
d_{S}(Y)=w\left(p b_{11}+\hat{p} b_{12}+x_{2} b_{2}\right)+(1-w)\left(p \hat{\alpha}_{11}+\hat{p} \hat{\alpha}_{12}\right)
$$

Preserving an unbiased estimator of $b_{1,1}$

The least squares fit of Y on x_{1} gives

$$
x_{1} \hat{\alpha}=p \hat{\alpha}_{11}+\hat{p} \hat{\alpha}_{12}
$$

We can use residual regression to obtain $\hat{\alpha}_{11}$.
Let \tilde{p} be the residual from a least-squares fit of p on \hat{p}. Because $\hat{p}^{\prime}(p-\hat{p})=0$, we have that the coefficients of the least-squares fit of p on \hat{p} are all one and so,

$$
\tilde{p}=p-\hat{p} .
$$

$\hat{\alpha}_{11}$ then solves

$$
\begin{aligned}
\tilde{p}^{\prime}\left[Y-\tilde{p} \hat{\alpha}_{11}\right] & =0 \\
(p-\hat{p})^{\prime}\left[Y-(p-\hat{p}) \hat{\alpha}_{11}\right] & =0
\end{aligned}
$$

Preserving an unbiased estimator of $b_{1,1}$

We again use residual regression to represent $b_{1,1}$, where $b_{1,1}$ is the coefficient vector on p in the least squares fit of Y on $\left(\begin{array}{lll}p & \hat{p} & x_{2}\end{array}\right)$. So, we residualize p on ($\hat{p} \quad x_{2}$). Since $x_{2}^{\prime}(p-\hat{p})=0$ and $\hat{p}^{\prime}(p-\hat{p})=0$, it folows that the fitted value is \hat{p} and the residuals are $p-\hat{p}$.
Then, $b_{1,1}$ satisfies

$$
(p-\hat{p})^{\prime}\left[Y-(p-\hat{p}) b_{11}\right]=0 .
$$

$b_{1,1}$ and $\hat{\alpha}_{1}$ satisfy the same orthogonality condition and so, we conclude that

$$
\hat{\alpha}_{11}=b_{11} .
$$

This is also the same orthogonality condition as in Equation 6. So,

$$
\hat{\alpha}_{11}=b_{11}=b_{1} .
$$

Preserving an unbiased estimator of $b_{1,1}$

So, we then have that

$$
\begin{aligned}
d_{S}(Y) & =p \hat{\beta}_{11, S}+\hat{\beta}_{12, s}+x_{2} \hat{\beta}_{2, S} \\
& =w\left(p b_{11}+\hat{p} b_{12}+x_{2} b_{2}\right)+(1-w)\left(p \hat{\alpha}_{11}+\hat{p} \hat{\alpha}_{12}\right) \\
& \left.=p b_{11}+w\left(\hat{p} b_{12}+x_{2} b_{2}\right)+(1-w) \hat{p} \hat{\alpha}_{12}\right)
\end{aligned}
$$

and conclude immediately that

$$
\hat{\beta}_{11, S}=b_{11}, \quad E\left[\hat{\beta}_{11, S}\right]=E\left[b_{11}\right]=\beta_{11}
$$

Applications

The lecture note illustrates how to apply this result to our fixed effects model for panel data.

Next time: Work through Chamberlain (2016) - applies these results to estimation of neighborhood effects.

