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Motivation

These lectures on the Normal-Linear Model are my personal favorite part of
this course.

There are so many insights packed into a very simple model.
The techniques we’ll cover make the proofs incredibly simple and are
generally very useful.
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The Normal Distribution

Z ∼ N(0, 1) with density

f (z) =
1√
2π

exp(−1
2
z2)

with E [Z ] = 0,V (Z ) = E [Z 2] = 1. We say Z is a standard normal
distribution.

We write
W ∼ N(µ, σ2)

if W = µ+ σZ , Z ∼ N(0, 1).



Joint Normal Distribution

If W is n × 1 random vector with a joint normal distribution, we write
W ∼ Nn(µ,Σ), where µ

n×1
is the mean vector and Σ

n×n
is the cov. matrix.

Claim 3: If a1 ∈ Rm×m, a2 ∈ Rm and W ∼ Nn(µ,Σ), then

a1W + a2 ∼ N(a1µ+ a2, a1Σa′1).

Claim 4: If V ∼ Nn(0, In) and q is n × n orthogonal matrix, then

qV ∼ N(0, In).

Why? We have that qV ∼ N(0, qInq′) = N(0, In).
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Assumptions

Assume random sampling of the data

(Yi ,Zi )
i .i .d∼ F , i = 1, . . . , n

where Yi is 1× 1.

We additionally assume that

E [Yi |Xi = xi ] = x ′iβ, and V (Yi |Xi = xi ) = σ2.

We assume: (1) conditional expectation is linear; (2) homoskedasticity.



Assumptions

Assume that the conditional distribution of Yi given Zi = zi is normally
distributed:

Yi |Xi = xi ∼ N(x ′i , σ
2) for i = 1, . . . , n.

We’re making distributional assumption. This will allow us to make
progress in finite sample.

To write the model, we define

Ui = Yi − x ′iβ, Vi = Ui/σ

and so, Vi |X = x ∼ N(0, 1) for i = 1, . . . , n.
Note that we are conditioning on X , not Xi . This holds by the random
sampling assumption.



The Normal Linear Model

So, we can write the normal linear model as

Y = xβ + σV , V |X = x ∼ N(0, In) (1)

and

Y
n×1

=

Y1
...
Yn

 , x
n×K

=

x ′1
...
x ′n

 , V
n×1

=

V1
...
Vn

 .

Note: The lecture notes introduce the matrix Z = z
n×n

. Think of this as: We

observe zi and apply some fixed transformations to xi .
I will just directly condition on X = x to simplify notation.
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The Canonical Form

We have the normal linear model:

Y = xβ + σV , V |X = x ∼ N(0, In)

Goal: Rewrite this model as

Y ∗ =

(
µ
0

)
+ σV ∗, V ∗|X = x ∼ N(0, In),

where µ is a K × 1 vector of means. This is the canonical form of the
normal linear model.

Why? It will REALLY simplify a lot of proofs of classic results.
What’s happening when we do that? We are “rotating our data” so
that only the first k “rotated observations” are used to estimate b –
the least squares coefficients.



Linear algebra results I

A n × n matrix q is orthogonal if q−1 = q′.
If q is orthogonal, so is q′.
If q is orthogonal, then q′q = qq′ = In.

Claim 1: Let a1, a2 ∈ Rn and q ∈ Rn×n be orthogonal. Then,

〈qa1, qa2〉 = 〈a1, a2〉.

Why? 〈qa1, qa2〉 = (qa1)′(qa2) = a′1q
′qa2 = a′1a2.



Orthogonal matrices

Orthonormal matrices can be thought of rotations.

Example: In R2, any orthonormal matrix can be represented by

q =

(
cos(α) − sin(α)
sin(α) cos(α)

)
for some angle α. This rotates a vector x by angle α.

This geometric intuition generalizes to higher dimensions.



Orthogonal matrices and rotation

Idea of the Canonical Form: One particular rotation that we focus on
will rotate x so that all the information is in the first k elements.

Design matrix x has rank K < n – its columns span a K -dimensional
space.
We will change the basis of the n-dimensional space so that we can
represent all elements of x using only the first K basis vectors of the
transformed space.



Linear algebra results II

Claim 2: Singular Value Decomposition
If x is n × K with n ≥ K , then there is an orthogonal matrix
q ∈ Rn×n, diagonal matrix d = diag{d1, . . . , dK} ∈ RK×K with
d1 ≥ . . . dK ≥ 0 and an orthogonal matrix s ∈ RK×K such that

x = q1ds
′,

where q1 is the n × K matrix formed by the first K columns of q with
q

n×n
=
(
q1
n×K

q2
n×n−K

)
.



Going to the Canonical Form

Assume that n > K and that the columns of x are linearly independent.
That is, if c ∈ RK and xc = 0, then c = 0.
Why do we need this? Implies that x ′x is invertible and so, the matrix
d in the SVD of x is non-singular with dk > 0 for k = 1, . . . ,K .

Using SVD, we have x = q1ds
′. Plug this into normal linear model:

Y = (q1ds
′)β + σV .

Multiply both sides by q′ =

(
q′1
q′2

)
. So,

q′Y =

(
q′1
q′2

)
q1ds

′β + σq′V



Going to the Canonical Form

q′Y =

(
q′1q1
q′2q1

)
ds ′β + σq′V

Because q is orthogonal, we have that q′1q1 = IK , q′2q1 = 0(n−K)×K . So,

q′Y =

(
IK
0

)
µ+ σq′V ,

where we set µ = ds ′β. Define

Y ∗ = q′Y , V ∗ = q′V .

Note that V ∗|X = x ∼ N(0, In) and we’re done!



The Canonical Form

The canonical form is

Y ∗ =

(
IK
0

)
µ+ σV ∗, V ∗|X = x ∼ N(0, In). (2)

Note that

Y ∗|X = x ∼ N(

(
µ
0

)
, σ2In).



The Canonical Form

We do some additional rewriting. Let

Y ∗(1) =

Y ∗1
...

Y ∗K

 , V ∗(1) =

V ∗1
...

V ∗K


Y ∗(2) =

Y ∗K+1
...
Y ∗n

 , V ∗(2) =

V ∗K+1
...
V ∗n

 .

Write the canonical form as

Y ∗(1) = µ+ σV ∗(1) (3)

Y ∗(2) = σV ∗(2), (4)

where components of V ∗(1),V
∗
(2) are i.i.d N(0, 1) conditional on X = x .
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Least Squares and the Canonical Form

Least squares solves

b = arg min
c
‖Y − xc‖2

Let’s write this in terms of the canonical form.

First, note that

‖Y − xc‖2 = 〈Y − xc ,Y − xc〉
= 〈q′(Y − xc), q′(Y − xc)〉 = ‖q′(Y − xc)‖2.

Second, note that

x = q1ds
′ =⇒ ‖q′(Y − xc)‖ = ‖Y ∗ −

(
ds ′

0

)
c‖2.



Least Squares and the Canonical Form

So, we have

‖

(
Y ∗(1)
Y ∗(2)

)
−
(
ds ′

0

)
c‖2 = ‖

(
Y ∗(1) − ds ′c

Y ∗(2)

)
‖2

= ‖Y ∗(1) − ds ′c‖2 + ‖Y ∗(2)‖
2.

The least-squares estimate is simple! It is

b = (ds ′)−1Y ∗(1)

= β + σsd−1V ∗(1),

where we used µ = ds ′β. That is, b only depends on the first K elements
of Y ∗.

This is what we meant when describing the rotation as putting “all the
information” on the first K elements.



Least Squares and the Canonical Form

So from
b = β + σsd−1V ∗(1),

we immediately have the following result.

Result #1:

b|X = x ∼ N(β, σ2sd−2s ′),

where x = q1ds
′ =⇒ x ′x = sd2s ′ and (x ′x)−1 = sd−2s ′.



Sum of Squared Residuals

Using this expression for b, we can write SSR :

SSR = ‖Y − xb‖2

= ‖Y ∗(1) − ds ′b‖2 + ‖Y ∗(2)‖
2 = ‖Y ∗(2)‖

2,

where

‖Y ∗(2)‖
2 = σ2‖V ∗(2)‖

2

= σ2
n∑

i=K+1

(V ∗i )2,

where each V ∗i is i.i.d. N(0, 1) conditional on X = x .



Sum of Squared Residuals

So from,

SSR = σ2
n∑

i=K+1

(V ∗i )2,

we immediately have the following result.

Result #2:
SSR|X = x ∼ σ2 · Chi2(n − K ),

and
SSR ⊥⊥ b|X = x .

Moreover, we immediately have an unbiased estimator of σ2:

σ̂2 =
SSR

n − K
, E [σ̂2|X = x ] = σ2.

using that the expectation of a Chi-squared r.v. is its degrees of freedom.
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Confidence Intervals

As in Note 4, we construct CI’s for a linear combo of coefficients

l ′β =
K∑
j=1

ljβj .

The standard error is

SE = [σ̂2l ′(x ′x)−1l ]1/2,

where σ̂2 = SSR
n−K

We consider our usual t-statistic

t =
l ′(b − β)

SE
.



Confidence Intervals

Definition: If WS with W ∼ N(0, 1), S ∼ Chi2(m), then

W

(S/m)1/2 ∼ t(m).

Claim 5:
l ′(b − β)

SE
|X = x ∼ t(n − K ).

Why? We re-write by dividing by σ2/σ2 and substituting in for σ̂2. We get

l ′(b − β)

[σ2l ′(x ′x)−1l ]1/2
/[

SSR

σ2(n − K )
]|X = x ∼ N(0, 1)

[Chi
2(n−K)
n−K ]1/2

∼ t(n − K ).

So, we can construct confidence intervals by just substituting in the critical
values for a t(n − K ) distribution.

These will be exact, finite-sample confidence intervals – NOT
asymptotic CIs.



Confidence Intervals

Let c denote the 97.5 quantile of a t(n − K ) distribution. Then, our 95%
confidence interval is

P(l ′b − c · SE ≤ l ′β ≤ l ′b + c · SE |X = x) = 0.95.

Since the probability does not depend on x , it holds unconditionally as well.
So,

P(l ′b − c · SE ≤ l ′β ≤ l ′b + c · SE ) = 0.95.



Confidence Ellipses

Now suppose we wish to obtain confidence regions for multiple linear
combinations of coefficients.

L is an r × K matrix. So Lβ is r × 1. We want to construct a region
for Lβ.
From the conditional distribution for b, we have that

Lb|X = x ∼ N(Lβ, σ2L(x ′x)−1L′).

Define our estimator of the covariance matrix as

ˆCov(Lb) = σ̂2L(x ′x)−1L′, σ̂2 =
SSR

n − K
.



Confidence Ellipses: Useful Probability Results

Claim 6: If W ∼ Nr (µ,Σ), then

(W − µ)′Σ−1(W − µ) ∼ Chi2(r).

Definition: If S1 ⊥⊥ S2 with S1 ∼ Chi2(r) and S2 ∼ Chi2(m), then

S1/r

S2/m
∼ F (r ,m).

The ratio follows an F -distribution with degrees of freedom r ,m.



Confidence Ellipses: Usual F-stat

Claim 7: Conditional on X = x ,

(Lb − Lβ)′[ ˆCov(Lb)]−1(Lb − Lβ)/r ∼ F (r , n − K ).

Why? Again divide by σ2/σ2. We have

(Lb − Lβ)′[σ2L(x ′x)−1L′]−1(Lb − Lβ)/r

SSR/[σ2(n − K )]
|X = x ∼ Chi2(r)/r

Chi2(n − K )/(n − K )

∼ F (r , n − K ).
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Canonical Form of the F-Test

We just covered the F-test... Why are we covering it again?

We will formulate the F-test in the canonical form of the normal linear
model.

This will allow us easily formulate the F-statistic as the difference of
the R2 in a “restricted” and “unrestricted” regressions.
This will also serve as a launching point for our discussion of
dominating least squares.

The Problem: We have a bunch of regressors and are only interested in
testing the joint significance of some subset.

E.g. We include a set of controls in our regression and are only
interested in testing whether the coefficient on the treatment of
interest is significant.
E.g. Interested in only testing the coefficient on education in a
regression of log wages on education with some additional controls.



Canonical Form of the F-test – Set up

Consider the normal linear model

Y = xβ + σV , V |x ∼ N(0, In),

where x is n × K . Partition the covariates into two sets

Y = x1β1 + x2β2 + σV , V |x ∼ N(0, In), (5)

where x1 is n × K1 and x2 is n × K2.
Goal: Test H0 : β2 = 0.

We begin by re-writing the normal linear model into a canonical form that
partitions µ into subvectors µ1, µ2 and then we can simply test µ2 = 0.



Canonical Form of the F-test – Set up

First: Residualize x2.
Let x̃2 be the residual from projecting x2 onto x1. So, we have

x̃2 = x2 − x1t, x
′
1x̃2 = 0.

Since x2 = x̃2 + x1t, we plug this into the normal linear model to get

xβ = x1α + x̃2β, α = β1 + tβ2.



Canonical Form of the F-test – Set up

Second: Construct SVDs
Let rank(x1) = h ≤ K1. The SVD of x1 is

x1 = q1d1s
′
1,

where q1 is N × h with q′1q1 = q1q
′
1 = Ih, d1 is h × h diagonal matrix

with positive elements on the diagonal, s1 is K1 × h with
s ′1s1 = s1s

′
1 = Ih.

Let rank(x̃2) = r ≤ K2. The SVD of x̃2 is

x̃2 = q2d2s
′
2,

where q2 is N × r with q′2q2 = q2q
′
2 = Ir , d2 is h × h diagonal matrix

with positive elements on the diagonal, s2 is K2 × r with
s ′2s2 = s2s

′
2 = Ir .



Canonical Form of the F-test – Set up

Since x̃2 is orthogonal to x1, we have that

0 = x̃ ′2x1 = s2d2q
′
2q1d1s

′
1.

Pre-multiplying by d−1
2 s ′2 and post-multiplying by s1d

−1
1 , we get that

0 = q′2q1.

So q2 is orthogonal to q1.

Consider the linear subspace spanned by the columns of
(
q1 q2

)
. This has

dimension h + r ≤ K and its orthogonal complement
(
q1 q2

)⊥ has
dimension n − h − r .

Define an n × (n − h − r) matrix q3 whose columns form an
orthonormal basis of

(
q1 q2

)⊥. So
q′3q1 = 0, q′3q2 = 0, q′3q3 = In−h−r .



Canonical Form of the F-test – Set up

Third: Form q =
(
q1 q2 q3

)
and proceed to the canonical form of the

normal linear model.
We have

Y = x1α + x̃2β2 + σV

q′Y =

q1
q2
q3

(q1d1s
′
1α + q2d2s

′
2β2

)
+ σq′V

Y ∗ =

Ih
0
0

 d1s
′
1α +

0
Ir
0

 d2s
′
2β2 + σV ∗

Y ∗ =

µ1
µ2
0

+ σV ∗, V ∗|X = x ∼ N(0, In)

where Y ∗ = q′Y ,V ∗ = q′V , µ1 = d1s
′
1α, µ2 = d2s

′
2β2.



Canonical Form of the F-test – Set up

We’re done! We have

Y ∗(1) = µ1 + σV(1),

Y ∗(2) = µ2 + σV(2),

Y ∗(3) = σV(3),

where Y ∗(1) is the first h elements, Y ∗(2) is the next r elements, and Y ∗(3 is
remaining n − h − r elements of Y ∗. Moreover, conditional on X = x , the
elements of V ∗(1),V

∗
(2),V

∗
(3) are all i.i.d. N(0, 1).



Canonical Form of the F-test – The F-Stat

We will now construct the F-stat in terms of SSR of restricted (just using
x1) and unrestricted (using both x1, x2) regressions.

Define

SSRr = min
c∈Rh
‖Y − x1c‖2.

Note that

‖Y − x1c‖2 = ‖q′(Y − x1c)‖ = ‖Y ∗ −

Ih
0
0

 d1s
′
1c‖2

= ‖Y ∗(1) − d1s
′
1c‖2 + ‖Y(2)‖2 + ‖Y(3)‖2.

So,
SSRr = ‖Y(2)‖2 + ‖Y(3)‖2.



Canonical Form of the F-test – The F-Stat

Similarly, define

SSRu = min
c1∈Rh,c2∈Rr

‖Y − x1c1 − x̃2c2‖2.

As before, we can show

SSRu = ‖Y(3)‖2,

with least-squares estimates

α̂ = s1d
−1
1 Y ∗(1), b2 = s2d

−1
2 Y ∗(2)

and we can recover b1 as b1 = α̂− tb2, where t = s1d
−1
1 q′1x2 (linear

regresion algebra).



Canonical Form of the F-Test – The F-stat

Consider the following test statistic for the null, β2 = 0:

F =
(SSRr − SSRu)/r

SSRu/(n − h − r)
.

Claim: Under H0 : β2 = 0,

F |X = x ∼ Fr ,n−h−r .

See notes for simple argument.
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Dominating Least Squares

Machine learning all the rage today... Techniques provide high quality
predictions in high-dimensional settings.

One key idea: Shrinkage – shrink coefficients towards zero. This
produces more biased but lower variance predictions. Provided this
tradeoff between bias and variance is “tuned” correctly, this can greatly
improves prediction accuracy

Old result: James-Stein (61). We can show that least-squares is dominated
by a shrinkage estimator in the normal linear model.

Provides a closed form expression for the optimal level of shrinkage –
where the shrinkage factor will depend on the data.
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The Value of Shrinkage

Consider the canonical form

Y ∗(1) = µ+ σV ∗(1),

Y ∗(2) = σV ∗(2).

Goal: Construct an accurate estimator µ̂ of µ, where accurate means low
MSE

E [
K∑

k=1

(µ̂k − µk)2.

Shrinking our estimator towards zero will produce biased estimator but may
lead to a large decrease in the variance of the estimator. This could lead to
a net large decrease in the MSE.

E.g. µ̂LS = Y ∗(1), and a shrinkage estimator could be
µ̂shrinkage = c · µ̂LS for 0 ≤ c ≤ 1.



The Bias-Variance Tradeoff

Recall:
V (µ̂) = E [(µ̂− E [µ̂])(µ̂− E [µ̂])′] = E [µ̂µ̂′]− E [µ̂]E [µ̂]′ = V .
Bias is E [µ̂− µ] = b.

Consider the MSE objective. With some algebra, we can write

E [(µ̂− µ)′(µ̂− µ)] = E [(µ̂− E [µ̂] + E [µ̂]− µ)′(µ̂− E [µ̂] + E [µ̂]− µ)]

= E [(µ̂− E [µ̂)′(µ̂− E [µ̂)]

+ 2E [(µ̂− E [µ̂])′(E [µ̂]− µ)]

+ E [(E [µ̂]− µ)′(E [µ̂]− µ)]

= E [(µ̂− E [µ̂)′(µ̂− E [µ̂)] + E [(E [µ̂]− µ)′(E [µ̂]− µ)]

= E [(µ̂− E [µ̂)′(µ̂− E [µ̂)] + b′b.



The Bias-Variance Tradeoff

We’ll now rewrite the first-term, E [(µ̂− E [µ̂)′(µ̂− E [µ̂)]. It is a scalar and
so, we can write

E [(µ̂− E [µ̂)′(µ̂− E [µ̂)] = E [Trace((µ̂− E [µ̂)′(µ̂− E [µ̂))]

= E [Trace((µ̂− E [µ̂)(µ̂− E [µ̂)′)]

= Trace(E [(µ̂− E [µ̂)(µ̂− E [µ̂)′])

= Trace(V ),

where we used that Trace(AB) = Trace(BA) and that we can exchange
the trace with the expectation because both are linear.

So, we have that our MSE is

MSE = E [(µ̂− µ)′(µ̂− µ)] = Trace(V ) + b′b,

where the first term depends on the variance of our estimator and the
second depends on the bias.



The Bias-Variance Tradeoff

This is a general decomposition for MSE. For scalar case,

MSE = E [(µ̂)− µ)2] = V (µ̂) + Bias(µ̂)2.

Now lets compare the least-squares estimator and the shrinkage estimator.
Least-squares is unbiased and V (µ̂LS) = V (Y ∗(1)) = σ2IK . So,

E [(µ̂LS − µ)′(µ̂LS − µ)] = σ2K .

For the shrinkage estimator, we have V (µ̂shrinkage) = c2σ2IK and
E [µ̂shrinkage − µ] = (c − 1)µ. So,

E [(µ̂shrinkage − µ)′(µ̂shrinkage − µ)] = c2σ2K + (1− c)2µ′µ.



Shrinkage in High-Dimensional Problems

Note that the MSE of the least-squares estimator grows linearly with
dimension K .

For high-dimensional (large K ) problems, this produces poor
predictions. In jargon, the least-squares estimator will be too high
variance and will “overfit.”

For the right choice of the shrinkage parameter, we may be able to produce
an estimator with a lower MSE than least-squares.

If we minimize the MSE of the shrinkage estimator with respect to c ,
we see that

c∗ =
µ′µ

σ2K + µ′µ
< 1

and so, we could in fact always improve the MSE of our estimator
with shrinkage. But this shrinkage rate depends on unknown
population parameters. Is there a feasible shrinkage rate that
dominates least squares?
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The Decision Problem

Consider the canonical form of the F-test

Y ∗(1) = µ1 + σV ∗(1),

Y ∗(2) = µ2 + σV ∗(2)

Y ∗(3) = σV ∗(3).

The parameter space is

Θ = Rh × Rr × R+ = {(µ1, µ2, σ)}.

The problem: We want to estimate µ2 (e.g. we want to prediction Y ∗(2)).
We specify a loss function:

L(θ, a) = ‖a− µ2‖2,

where a is an action (estimate of µ2).



The Decision Rule

A decision rule d specifies an action as a function of the data,
m̂u2 = d(Y ∗). The risk function R gives the expected loss of d under the
likelihood, Pθ

R(θ, d) = Eθ[L(θ, d(Y ∗))].

We want to choose decision rules that will minimize our risk/expected loss.



Shrinkage Estimator

The least-squares estimator for µ2 is simply

µ̂2,LS = Y ∗(2).

Consider the shrinkage estimator

µ̂2,c = c · µ̂2,LS = c · Y ∗(2)

for 0 ≤ c ≤ 1. What is the risk of this? We have that

R(θ, µ̂2,c) = Eθ‖cY ∗(2) − µ2‖2

= Eθ‖c(µ2 + σV ∗(2))− µ2‖

= (1− c)2‖µ2‖2 + c2rσ2.

We’d want to choose c to minimize this. However, this is infeasible
because θ is unknown. What do we do?
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Stein’s Unbiased Estimate of Risk (SURE)

We construct a statistic whose expectation under Pθ is R(θ, µ̂2,c). We then
minimize this unbiased estimate of the risk with respect to c .

This statistic is known as Stein’s Unbiased Estimate of Risk or
SURE.

How do we get there? First, consider

Eθ‖Y ∗(2)‖
2 = ‖µ2 + σV ∗(2)‖

2 = ‖µ2‖2 + rσ2.

We have an unbiased estimator of σ2, σ̂2 = SSR
n−K , where K = h + r . So,

‖Y ∗(2)‖
2 − r σ̂2

is an unbiased estimator of ‖µ2‖.



Stein’s Unbiased Estimate of Risk (SURE)

Our unbiased estimate of risk is simply a linear combination of the
unbiased estimates of ‖µ2‖2 and σ2. It is

Qc = (1− c)2[‖Y ∗(2)‖
2 − r σ̂2] + c2r σ̂2

= (1− c)2[‖Y ∗(2)‖
2 − r

SSR

n − K
] + c2r

SSR

n − K
,

where K = h + r .

The SURE estimator is the shrinkage estimator that chooses c to
minimize SURE. That is,

ĉSURE = arg min
0≤c≤1

Qc .

If the minimizer is negative, we set c = 0.



SURE Estimator

Taking the first-order condition, we immediately see that

ĉSURE =
(
1− SSR

‖Y ∗(2)‖
r

n − h − r

)
+
.

But, we just had that

F =
(SSRr − SSRu)/r

SSRu/n − h − r
=
‖Y ∗(2)‖
SSR

n − h − r

r
.

So,

ĉSURE =
(
1− 1

F

)
+

µ̂2,s =
(
1− 1

F

)
+
Y ∗(2).

This is the SURE Estimator.
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James & Stein (61)

Theorem: James & Stein (61)
If r ≥ 3 and if c satisfies

0 < c <
2(r − 2)

n − h − r + 2
,

then

µ̂2,shrinkage = (1− c
‖Y ∗(3)‖

2

‖Y ∗(2)‖2
)µ̂2,LS

dominates the least-squares estimator

R(θ, µ̂2,shrinkage) < R(θ, µ̂2,LS) ∀θ ∈ Θ.

R(θ, µ̂2,shrinkage) is minimized at c∗ = r−2
n−h−r+2 .



James & Stein (61)

Theorem: James & Stein (61) – continued.
The positive-part estimator

µ̂+shrinkage = (1− c
‖Y ∗(3)‖

2

‖Y ∗(2)‖2
)+µ̂2,LS

dominates µ̂LS under the same conditions and dominates µ̂shrinkage .



Apply James & Stein (61) to our results

Our shrinkage estimator µ̂2,s = (1− r
n−h−r

‖Y ∗
(3)‖

2

‖Y ∗
(2)‖2

)+µ̂LS set c = r
n−h−r .

So, it dominates least squares if

r

n − h − r
<

2(r − 2)

n − h − r + 2
.

A sufficient condition for this r ≥ 5, n − h − r > 10.
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Prediction and Shrinkage

We will now restate the results in the context of prediction.
This may be a more intuitive presentation but it is the same
fundamental idea. By shrinking our predictions, we are introducing
some bias in exchange for a large reduction in variance.

The Problem: We observe Y
n×1

, which follows the normal linear model

Y |X = x ∼ N(xβ, σ2In).

We wish to predict the value of an independent draw Ỹ
n×1

from the same

distribution
Ỹ |X = x ∼ N(xβ, σ2In),

where θ = (β, σ) ∈ RK × R+. Assume Y ⊥⊥ Ỹ |X = x .



Prediction: The Decision Problem

The action a is a point in Rn – it is a prediction for Ỹ .

The loss function is

L(θ, a) = Eθ[
n∑

j=1

(Ỹj − aj)
2]

= Eθ[‖Ỹ − a‖2]

= Eθ[‖xβ + σṼ − a‖2]

= ‖xβ − a‖2 + nσ2.

The decision rule specifies an action as a function of the observation Y .
The risk function is

R(θ, d) = Eθ[L(θ, d(Y ))].



Shrinkage and Prediction

As before, we partition the regressors into two groups

xβ = x1β1 + x2β2 = x1α + x̃2β2,

where x̃2 = x2 − x1t, x
′
1x̃2 = 0, α = β1 + tβ2. We will consider a prediction

function that just shrinks the coefficients on x2 (i.e. x̃2).

The least-squares decision rule is

dLS(Y ) = xb = x1α̂ + x̃2b2,

with (x ′1x1)α̂ = x ′1Y , (x̃ ′2x̃2)b2 = x̃ ′2Y .



Shrinkage and Prediction

We shrink the least squares estimate b2 with

β̂2,S = (1− 1
F

)+b2

and consider the decision rule

dS(Y ) = x1α̂ + x̃2β̂2,S .

Note that

dS(Y ) = wdLS(Y ) + (1− w)x1α̂ w = (1− 1
F

)+.

This will be useful later.



Comparing the Risk Functions

We will translate back into the canonical form to simplify the risk
functions. First, for the shrinkage prediction, we have

R((β, σ), dS) = Eθ[‖q′[x1(α̂− α) + x̃2(β̂2,S − β2)]‖] + nσ2

= Eθ[‖Y ∗(1) − µ1‖2] + Eθ[‖µ̂2,S − µ2‖2] + nσ2

Next, for least-squares

R((β, σ), dLS) = Eθ[‖Y ∗(1) − µ1‖2] + Eθ[‖Y ∗(2)2,S − µ2‖2] + nσ2

= (n + h + r)σ2.

So, R(θ, dS) < R(θ, dLS) for all θ if and only if

Eθ[‖µ̂2,S − µ2‖2] < rσ2.

A sufficient condition (as before) is r ≥ 5, n − h − r > 10.
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Preserving our unbiased estimator

Suppose we have

Y = x1β1 + x2β2 + σV , V |X = x ∼ N(0, In).

We are interested in the coefficients on x1, β1.
E.g. x1 contains our treatment of interest and x2 contains a large set
of additional controls.

We wish to apply our shrinkage estimator to β2 but then, if we used that
to recover an estimate of β1, it will be biased. That is,

β̂1,S = α̂− tβ̂2,S

is biased for β1 in general. How can we preserve an unbiased estimator for
β1 but still maintain the dominance result for the prediction MSE?



Preserving our unbiased estimator – Set Up

The notation here is confusing so pay attention.

Suppose we have some set of covariates p and we want an unbiased
estimator for the coefficients on p. That is, we are after an unbiased
estimator of β1 in

Y = pβ1 + x2β2 + σV .

In other words, we wish to preserve the least-squares estimate b1, which
satisfies

(p − Proj(p|x2))′[Y − (p − Proj(p|x2)b1] = 0 (6)

by residual regression.



Preserving our unbiased estimator – Set Up
Construct the fitted values from the least-squares projection of p on x2,
where

x ′2(p − p̂) = 0, p̂′(p − p̂) = 0.

Now define

x1 =
(
p p̂

)
and so,

x =
(
x1 x2

)
.

The least squares projection of Y on x has fitted value

xb = pb11 + p̂b12 + x2b2

and we want to preserve the coefficient vector b11 and thereby obtain an
unbiased estimator of β1,1.



Preserving an unbiased estimator of b1,1

Consider the shrinkage estimator. It produces predictions

dS(Y ) = x1β̂1,S + x2β̂2,S

= x1α̂ + x̃2β̂2,S .

Recall that

dS(Y ) = wdLS(Y ) + (1− w)x1α̂, w = (1− 1
F

)+.

So, we have that

dS(Y ) = w(pb11 + p̂b12 + x2b2) + (1− w)(pα̂11 + p̂α̂12)



Preserving an unbiased estimator of b1,1

The least squares fit of Y on x1 gives

x1α̂ = pα̂11 + p̂α̂12.

We can use residual regression to obtain α̂11.
Let p̃ be the residual from a least-squares fit of p on p̂. Because
p̂′(p − p̂) = 0, we have that the coefficients of the least-squares fit of
p on p̂ are all one and so,

p̃ = p − p̂.

α̂11 then solves

p̃′[Y − p̃α̂11] = 0
(p − p̂)′[Y − (p − p̂)α̂11] = 0.



Preserving an unbiased estimator of b1,1

We again use residual regression to represent b1,1, where b1,1 is the
coefficient vector on p in the least squares fit of Y on

(
p p̂ x2

)
.

So, we residualize p on
(
p̂ x2

)
. Since x ′2(p − p̂) = 0 and p̂′(p − p̂) = 0, it

folows that the fitted value is p̂ and the residuals are p − p̂.

Then, b1,1 satisfies

(p − p̂)′[Y − (p − p̂)b11] = 0.

b1,1 and α̂1 satisfy the same orthogonality condition and so, we conclude
that

α̂11 = b11.

This is also the same orthogonality condition as in Equation 6. So,

α̂11 = b11 = b1.



Preserving an unbiased estimator of b1,1

So, we then have that

dS(Y ) = pβ̂11,S +ˆ̂β12,s + x2β̂2,S

= w(pb11 + p̂b12 + x2b2) + (1− w)(pα̂11 + p̂α̂12)

= pb11 + w(p̂b12 + x2b2) + (1− w)p̂α̂12)

and conclude immediately that

β̂11,S = b11, E [β̂11,S ] = E [b11] = β11.



Applications

The lecture note illustrates how to apply this result to our fixed effects
model for panel data.

Next time: Work through Chamberlain (2016) – applies these results to
estimation of neighborhood effects.
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