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Extremum Estimators

An estimator θ̂ is an extremum estimator if it is defined as

θ̂ = arg min
θ∈Θ

Qn(θ),

where Θ ⊂ RK . Qn(·) is some function of our sample data.

You’ll spend a lot of 2140 studying the properties of extremum estimators.
GMM is a special case of this class of estimators.

There is a lot to be said about extremum estimators.
References: Newey & McFadden (1994), Hayashi Ch. 8.
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Set up

As before, the data are W1, . . . ,Wn i.i.d. for i = 1, . . . , n.

We are given a moment function ψ(·, ·) that satisfies

E [ψ(Wi , γ)] = 0

for some unique γ in the parameter space, where as a function of γ
ψ : RK → RL with L ≥ K .

This is our moment condition.
Assuming γ is unique is assuming the model is identified – there are
more primitive assumptions that can be made to justify this.
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Example: Euler Equations
Recall:

E [δRt+1
u′(ct+1)

u′(ct)
− 1|It ] = 0,

where Rt+1 = rate of return on savings instrument, δ = discount rate, It =
information up to date t. If u(c) = c1−σ

1−σ , then

E [δRt+1(
ct+1

ct
)−γ − 1|It ] = 0.

So, let xt be a vector of variables that are known at date t (i.e. xt ∈ It).
This implies that

E [xt(δRt+1(
ct+1

ct
)−γ − 1)|It ] = 0 =⇒ E [xt(δRt+1(

ct+1

ct
)−γ − 1)] = 0.

This is a moment equation with

γ = (δ, γ), ψ((xt ,Rt+1), γ) = xt(δRt+1(
ct+1

ct
)−γ − 1).
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GMM Estimator

As before, we define the sample moment function:

gn(a) =
1
n

n∑
i=1

ψ(Wi , a).

By the LLN, gn(γ)
p−→ E [ψ(Wi , γ)] = 0. So, it’s natural to consider an

estimator γ̂ that sets

gn(γ̂) ≈ 0.
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Just vs. Over-identified
If L = K , we are just-identified. Try to directly solve the non-linear
system of equation (e.g. apply some root-finding algorithm).

If L > K , we are over-identified. As before, we can introduce a K × L
weight matrix D̂ and solve for

D̂gn(γ̂) = 0.

Or, we can consider the minimum norm problem

γ̂ = arg min
a

g(a)′Ĉg(a),

where Ĉ is L× L and conv. in prob. to a positive definite, symmetric
matrix C . From the FOC, we see there’s a one-to-one mapping between Ĉ
and D̂ with

D̂ = (
∂gn(γ̂)

∂a
)′

K×L

Ĉ .
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Consistency

For our purposes, we will assume that

γ̂
p−→ γ.

There are primitive conditions that will ensure this holds – (identification +
uniform convergence; See Newey-McFadden (1994), Hayashi Ch 8,
Wooldridge Ch 14.)

Given consistency, we will provide a heuristic sketch of the proof of
asymptotic normality.

Key tool: The delta method.
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Asymptotics: Just identified case
Our estimator satisfies

gn(γ̂) =
1
n

n∑
i=1

ψ(Wi , γ̂) = 0

and consider

√
ngn(γ̂) =

√
n
1
n

n∑
i=1

ψ(Wi , γ̂) = 0.

Apply the mean-value theorem to get

√
n
1
n

n∑
i=1

ψ(Wi , γ) + (
1
n

n∑
i=1

∂ψ(Wi , γ
∗)

∂a
)
√
n(γ̂ − γ) = 0

√
ngn(γ) +

∂gn(γ∗)

∂a

√
n(γ̂−) = 0,

where γ∗ is somewhere on the segment connecting γ̂ and γ.
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Asymptotics: Just identified case
Re-arrange and we get that

√
n(γ̂ − γ) = −(

∂gn(γ∗)

∂a
)−1(
√
ngn(γ)).

We have that gn(γ)
p−→ E [ψ(Wi , γ) = 0. So, apply a CLT to

√
ngn(γ) and

get
√
ngn(γ)

d−→ N(0,E [ψ(Wi , γ)ψ(Wi , γ)′]).

Then, γ∗
p−→ γ because it is sandwiched between γ̂ and γ. So, we have that

(
∂gn(γ∗)

∂a
)−1 p−→ E [

∂ψ(Wi , γ)

∂a
]−1

Here I used CMT and that if θn
p−→ θ and Qn(θ)

p−→ Q(θ), then

Qn(θn)
p−→ Q(θ).

We’re also assuming that E [∂ψ(Wi ,γ)
∂a ] is invertible.
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Asymptotics: Just identified case

So, we have that

√
n(γ̂ − γ)

d−→ N(0, αΣα′),

where

α′ = α = E [
∂ψ(Wi , γ)

∂a
]−1

K×K

,

Σ = E [ψ(Wi , γ)ψ(Wi , γ)′].
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Asymptotics: Over-identified case

Lecture notes walk through a similar argument to derive the asymptotic
distribution in the over-identified case. I restate it below.

Claim: In the over-identified case,

√
n(γ̂ − γ)

d−→ N(0, αΣα′),

where

α
K×L

= [ D
K×L

E [
∂ψ(Wi , γ)

∂a
]

L×K

]−1 D
K×L

,

Σ
L×L

= E [ψ(Wi , γ)ψ(Wi , γ)′].
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Optimal Weight Matrix

For the over-identified case, we had to select a weight matrix D̂
p−→ D.

Importantly, the limiting distribution depend on D.
Different choices of D led to different asymptotic covariance matrices.
Natural Q: What weight matrix should we select?

One idea: Select the weight matrix to “minimize” asymptotic variance
Let AvarD be the asymptotic covariance matrix of γ̂ with weight
matrix D.
Minimizing asymptotic variance means finding the D∗ such that

AvarD∗ − AvarD

is positive semi-definite for all other choices of D. This implies that
the asymptotic variance of any linear combination of γ̂ is minimized at
D∗.
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Optimal Weight Matrix

Claim:

D∗
K×L

= E [
∂ψ(Wi , γ)

∂a
]′

K×L

E [ψ(Wi , γ)ψ(Wi , γ)′]−1

L×L
.

Then,

AvarD∗ = (E [
∂ψ(Wi , γ)

∂a
]′E [ψ(Wi , γ)ψ(Wi , γ)′]−1E [

∂ψ(Wi , γ)

∂a
])−1.
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Two-step GMM

We have an optimal weight matrix – that’s great. But we need to
construct a sample analogue of it. Here’s way to get it:

(1) Pick some weight matrix, e.g. Ĉ = I , and compute δ̂(I ) by solving
the GMM objective for this choice of weight matrix.
(2) Use δ̂ to plug-in and construct an estimate of D̂∗, Ĉ ∗ – just use
the sample analogue.
(3) Estimate δ̂(D∗) by minimizing the GMM objective for this choice
of weight matrix, D̂∗, Ĉ ∗.

Natural Question: Do we have to adjust our standard errors since we
estimate the optimal weight matrix? No. It will still deliver the efficient
estimator.
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Two-step GMM – simple example

Suppose we want to estimate σ2 = V (Yi ) = E [(Yi − µ)2], where Yi is
1× 1. The sample analogue is

σ̂2 =
1
n

n∑
i=1

(Yi − Ȳ )2, Ȳ =
1
n

n∑
i=1

Yi .

Let’s use GMM to derive the asymptotic variance of σ̂2.
Keep in mind we want to know: Do we need to correct for the fact
that we estimated µ?

To do so, we’ll construct the following moment function

ψ(Yi , (µ, σ)) =

(
ψ1(Yi , µ)

ψ2(Yi , (µ, σ))

)
=

(
Yi − µ

(Yi − µ)2 − σ2

)
,

where σ = vec(Σ).
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Two-step GMM – simple example
The moment condition is

E [ψ(Yi , (µ, σ))] = 0.

We can solve this in two steps:
(1) E [ψ1(Yi , µ)] = 0 =⇒ µ = E [Yi ].
(2) Plug µ = E [Yi ] into E [ψ2(Yi , (µ, σ))] = 0 and its immediate that
σ2 = V (Yi ).

The sample counterpart is

1
n

n∑
i=1

ψ(Yi , (µ̂, σ̂)) = 0.

Again, solve this in two steps:
(1) 1

n

∑n
i=1 Yi − µ̂ = 0 =⇒ µ̂ = Ȳ .

(2) Plug µ̂ = Ȳ into 1
n

∑n
i=1 ψ2(Yi , (µ̂, σ̂)) = 0 to get that

σ̂2 = 1
n

∑n
i=1(Yi − Ŷ )2.
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Two-step GMM – simple example

Now, we can apply our GMM results from earlier to derive the limiting
distribution of µ̂, σ̂. In particular, let γ = (µ′, σ′)′. Then, we have that

√
n(γ̂ − γ)

d−→ N(0,Λ),

where

Λ = αΣα′, α = E [
∂ψ(Wi , γ)

∂a
]−1, Σ = E [ψ(Wi , γ)ψ(Wi , γ)′].

We’re only interested in Λ22. Can we write what that is? Note that

∂ψ(Wi , γ)

∂a
=

(
E [∂ψ1(Yi ,µ)

∂µ ] 0

0 E [∂ψ2(Yi ,(µ,σ
2))

∂σ2 ]

)

So, if you multiply through Λ22 =

E [∂ψ2(Yi ,(µ,σ
2))

∂σ2 ]−1E [ψ2(Yi , (µ, σ
2))ψ2(Yi , (µ, σ

2))′]E [∂ψ2(Yi ,(µ,σ
2))

∂σ2 ]−1.
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Two-step GMM
The asymptotic variance is unaffected by the fact that we estimated µ and
simply plugged in our estimate directly.

This turns out to be general! Suppose our moment function has the form

ψ(Wi , (a1, a2)) =

(
ψ1(Wi , a1)

ψ2(Wi , (a1, a2))

)
,

where we partitioned our parameters into γ = (γ1, γ2). Assume
dim(ψ1) = dim(a1), dim(ψ2) = dim(a2) – i.e. just identified case. We’re
only interested in γ2.

The sample analogue is

1
n

n∑
i=1

ψ(Wi , (γ̂1, γ̂2)) = 0.

We solve this in two steps:
(1) Solve 1

n

∑n
i=1 ψ1(Wi , γ̂1) = 0 to get γ̂1.

(2) Plug this in and solve 1
n

∑n
i=1 ψ2(Wi , (γ̂1, γ̂2)) to get γ̂2.
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Two-step GMM

If

E [
∂ψ2(Wi , (γ1, γ2))

∂a1
] = 0,

then
√
n(γ̂2 − γ2)

d−→ N(0, α22Σ22α
′
22),

where

α22 = E [
∂ψ2(Wi , (γ1, γ2))

∂a2
]−1,Σ22 = E [ψ2(Wi , (γ1, γ2))ψ2(Wi , (γ1, γ2))].
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Maximum Likelihood Estimation

We’ll now transition to another estimation strategy – maximum likelihood
estimation. This is an example of an M-estimator, which is another class
of extremum estimators.

Can think of maximum likelihood estimation as a maximum a posteori
estimator with a flat prior.
If you believe that the likelihood is well-specified, then MLE has some
extremely attractive properties.

Today: Just want to set-up the MLE estimator and next time, we’ll discuss
its properties.
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Set Up

As always, assume random sampling Wi ∼ F i.i.d for i = 1, . . . , n. We
specify a set of distributions

{Pθ : θ ∈ Θ}.

Each distribution has a density that is well-defined. We denote it f (w |θ).
For a given θ, f (w |θ) is the likelihood function.

We say the model is well-specified if for some θ∗ ∈ Θ,

F = Pθ∗ .

If it is possible that there does not exist such a θ∗, we refer to f as a
pseudo-likelihood or a quasi-likelihood.
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Set Up

We could also set this up in terms of conditional likelihoods. That is,
divide Wi into Yi ,Zi and then we model the distribution of Yi |Zi . Our
family of distributions

{Pθ : θ ∈ Θ}

is now a set of conditional likelihood functions.
Example: Normal linear model – we modeled Yi |Xi ∼ N(X ′i β, σ

2).
So, the set of distributions was the normal family with mean
parameterized by β and variance σ2.
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MLE: Definition
We observe W1, . . . ,Wn. Fix a particular value of θ. The joint density of
W1, . . . ,Wn|θ is given by

f (W1, . . . ,Wn|θ) = Πn
i=1f (Wi |θ).

The maximum likelihood estimator is the value of the parameter that
maximizes the likelihood of the observed data.

θ̂MLE = arg max
θ∈Θ

Πn
i=1f (Wi |θ).

Equivalently, we can take the log of the objective function because it is a
monotone function. And define the log-likelihood

Ln(W1, . . . ,Wn|θ) =
n∑

i=1

log(f (Wi |θ))

Then,

θ̂MLE = arg max
θ∈Θ

Ln(W1, . . . ,Wn|θ).
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Probit and Logit applications

Not going to cover this in section – I assume this is material you have seen
before. If not, make sure to read these sections of Note 10.

Next time: What are the properties of MLE? How can we derive its limit
distribution?
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