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Extremum Estimators

An estimator f is an extremum estimator if it is defined as

0 = argmin Qn(6),

where © C RK. Q,(-) is some function of our sample data.

You'll spend a lot of 2140 studying the properties of extremum estimators.
GMM is a special case of this class of estimators.

There is a lot to be said about extremum estimators.
References: Newey & McFadden (1994), Hayashi Ch. 8.



Outline

GMM Estimators
Set up



Set up

As before, the data are Wh,..., W, iid. fori=1,...,n.

We are given a moment function (-, -) that satisfies

E[(W;,~)] =0
for some unique ~ in the parameter space, where as a function of v
Y RK — R with L > K.
This is our moment condition.

Assuming -y is unique is assuming the model is identified — there are
more primitive assumptions that can be made to justify this.



Example: Euler Equations

Recall: ( )
U\Cet1
E[6R -1/ =0
[ t+1 U/(Ct) ’ f] )
where R;,1 = rate of return on savin§s instrument, 0 = discount rate, /; =
information up to date t. If u(c) = Cl__: then

C
E[6Res1( ’-“C“)*7 —1|I] = 0.
t

So, let x; be a vector of variables that are known at date t (i.e. x; € /).
This implies that

)T 1)l =0 — E[xt(aRtH(CZl )7 —1)] = 0.

Ct+1

Elxe(6Repa (=
Ct
This is a moment equation with

v = (6a 7)? 77D((X1.“a Rt+1)77) = Xt((SRt—l-l(CtT—i:l)_’y - 1)



GMM Estimator

As before, we define the sample moment function:
gn(a) = Zw W;, a).

By the LLN, gu(v) 2 E[¢(W;,~)] = 0. So, it's natural to consider an
estimator 4 that sets

gn(¥) =~ 0.



Just vs. Over-identified

If L = K, we are just-identified. Try to directly solve the non-linear
system of equation (e.g. apply some root-finding algorithm).

If L > K, we are over-identified. As before, we can introduce a K x L
weight matrix D and solve for

Dgn(%) = 0.
Or, we can consider the minimum norm problem
5 = argmin g(a)' Cg(a),
a
where € is L x L and conv. in prob. to a positive definite, symmetric

matrix C. From the FOC, we see there's a one-to-one mapping between C
and D with

~ ogn(4 ~
D= ( 82}7))’0
KxL
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Consistency

For our purposes, we will assume that
)
Y=

There are primitive conditions that will ensure this holds — (identification +
uniform convergence; See Newey-McFadden (1994), Hayashi Ch 8,
Wooldridge Ch 14.)

Given consistency, we will provide a heuristic sketch of the proof of
asymptotic normality.

Key tool: The delta method.



Asymptotics: Just identified case

Our estimator satisfies
o 1S .
== u(W,
n<
i=1
and consider
Vrgn(5) = s Zw(Wm ) =0.

Apply the mean-value theorem to get

Vit S uWin) + (530 2Ty s )
i=1

i=1

Vg + 20 sy <o,

where v* is somewhere on the segment connecting 4 and ~.



Asymptotics: Just identified case

Re-arrange and we get that

Vi3~ ) = ~( 200y gy,

We have that g,(v) & E[¢)(W;,~) = 0. So, apply a CLT to /ngn(7) and
get

Vnga(7) L N, E[H(Wi, 7)) (Wi, 7))

Then, v* £ ~ because it is sandwiched between 4 and +. So, we have that
9gn(v) -1 P, OV (Wi, 7)),
(oa ) D ET ]
Here | used CMT and that if ,, 2 6 and Qn(0) LN Q(0), then
Qn(0n) & Q(0).

31/1(\/\/,

We're also assuming that E| 7)] is invertible.



Asymptotics: Just identified case

So, we have that

where

oY(Wi, )

Oa
KxK

Y = E[(W;, v)v(Wi,7)].

[



Asymptotics: Over-identified case

Lecture notes walk through a similar argument to derive the asymptotic
distribution in the over-identified case. | restate it below.

Claim: In the over-identified case,
V(3 = 7) % N(0,aXa),

where

LXK

I, = ER (Wi )u(Wi, )]

— [ p F[Y)

KxL KxL
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Optimal Weight Matrix

For the over-identified case, we had to select a weight matrix D 2 D.
Importantly, the limiting distribution depend on D.

Different choices of D led to different asymptotic covariance matrices.
Natural Q: What weight matrix should we select?
One idea: Select the weight matrix to “minimize” asymptotic variance

Let Avarp be the asymptotic covariance matrix of 4 with weight
matrix D.

Minimizing asymptotic variance means finding the D* such that
Avarp~ — Avarp

is positive semi-definite for all other choices of D. This implies that
the asymptotic variance of any linear combination of 4 is minimized at
D*.



Optimal Weight Matrix

Claim:
 _ oP(W;,v),, . V-
KxL
Then,
0 VV,', / 1— i —
avarp- = (E[2X )y gy, oy 2T

Oa
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Two-step GMM

We have an optimal weight matrix — that's great. But we need to
construct a sample analogue of it. Here's way to get it:

(1) Pick some weight matrix, e.g. ¢ =/, and compute §(/) by solving
the GMM objective for this choice of weight matrix.
(2) Use 4 to plug-in and construct an estimate of D*, C* — just use
the sample analogue.
(3) Estimate 3(D*2 by minimizing the GMM objective for this choice
of weight matrix, D*, C*.

Natural Question: Do we have to adjust our standard errors since we

estimate the optimal weight matrix? No. It will still deliver the efficient
estimator.



Two-step GMM — simple example

Suppose we want to estimate 02 = V/(Y;) = E[(Y; — p)?], where Y; is
1 x 1. The sample analogue is

n

. 1 — — 1
0-2:;2(5/’,_ 27 Y:EZ

i=1

Let's use GMM to derive the asymptotic variance of 52.

Keep in mind we want to know: Do we need to correct for the fact
that we estimated 17

To do so, we'll construct the following moment function

0050 = (i) = (s o2)

where o = vec(X).



Two-step GMM — simple example

The moment condition is

Elo(Yi, (1, 0))] = 0.
We can solve this in two steps:
(1) E[p1(Yi )] =0 = p = E[Y]].

(2) Plug = E[Yj] into E[1)2(Yi, (i, 0))] = 0 and its immediate that
% = V(Y)).

The sample counterpart is

*Zd] ,,ﬂ&

Again, solve this in two steps:
(1) X Yi-Aa=0 = p=Y.
(2) Plug i =Y into 1 3°7  4ho(Y;, (f1,6)) = 0 to get that
62 =151 (V;-Y)2



Two-step GMM — simple example

Now, we can apply our GMM results from earlier to derive the limiting
distribution of fi, 4. In particular, let v = (1, 0’)". Then, we have that

V(3 =) L N, ),

where

A=osd, o= P s s )u(w )

We're only interested in Ayy. Can we write what that is? Note that

Op(Wiy) _ (E[PG] 0
Oa B 0 E[awz(\’,,m )]

So, if you multiply through Ay =
f 0-2 _ DA -
E[22 DT E (s ( Yy, (1, 02))a( Vi, (1, 02)) | E[ 22Uy,



Two-step GMM

The asymptotic variance is unaffected by the fact that we estimated p and
simply plugged in our estimate directly.

This turns out to be general! Suppose our moment function has the form

N Y1(W;, a1)
(W, (a1, a2)) = <¢2( (a1,82))>’

where we partitioned our parameters into v = (71,72). Assume
dim(vy1) = dim(ay), dim(¢») = dim(az) — i.e. just identified case. We're
only interested in .

The sample analogue is

wa i, (51,72)) = 0.

We solve this in two steps:

(1) Solve le 1 V1(W;,41) = 0 to get A1.
(2) Plug this in and solve 2 ™" 1 b5 (W;, (41, 42)) to get A2.



Two-step GMM

If
awz(Wi,(Wlﬁz)) _
E[ 831 ] N 07
then
V(B2 — 2) 4 N(0, a2 X 2000h5),
where
oz = E[22E 000210 e (W (1, 72) (W, (20

832



Maximum Likelihood Estimation

We'll now transition to another estimation strategy — maximum likelihood
estimation. This is an example of an M-estimator, which is another class
of extremum estimators.

Can think of maximum likelihood estimation as a maximum a posteori
estimator with a flat prior.

If you believe that the likelihood is well-specified, then MLE has some
extremely attractive properties.

Today: Just want to set-up the MLE estimator and next time, we'll discuss
its properties.



Set Up

As always, assume random sampling W; ~ F i.iid fori=1,...,n. We
specify a set of distributions

{Pg:ee@}.

Each distribution has a density that is well-defined. We denote it f(w|6).
For a given 0, f(w|@) is the likelihood function.

We say the model is well-specified if for some 0* € ©,
F = Py-.

If it is possible that there does not exist such a 8*, we refer to f as a
pseudo-likelihood or a quasi-likelihood.



Set Up

We could also set this up in terms of conditional likelihoods. That is,

divide W; into Y}, Z; and then we model the distribution of Y;|Z;. Our
family of distributions

{Pg:ee@}

is now a set of conditional likelihood functions.

Example: Normal linear model — we modeled Y;|X; ~ N(X!3,c?).
So, the set of distributions was the normal family with mean
parameterized by 3 and variance o



MLE: Definition

We observe Wi, ..., W,. Fix a particular value of 8. The joint density of
WA, ..., W,|0 is given by

f(Wb SRR an) = n:’:lf(VVIW)

The maximum likelihood estimator is the value of the parameter that
maximizes the likelihood of the observed data.

GMLE N7, f(W;]6).
argmaxTliy (W;|0)

Equivalently, we can take the log of the objective function because it is a
monotone function. And define the log-likelihood

Lo(Wa, ..., Wal0) = > log(f(W;|0))
i=1

Then,

OMLE L,(Wy,... W,IH).
arg max (Wi, ..., W,|0)



Probit and Logit applications

Not going to cover this in section — | assume this is material you have seen
before. If not, make sure to read these sections of Note 10.

Next time: What are the properties of MLE? How can we derive its limit
distribution?
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