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Maximum Likelihood Estimation

We’ll now transition to another estimation strategy – maximum likelihood
estimation. This is an example of an M-estimator, which is another class
of extremum estimators.

Can think of maximum likelihood estimation as a maximum a posteori
estimator with a flat prior.
If you believe that the likelihood is well-specified, then MLE has some
extremely attractive properties.

Today: Just want to set-up the MLE estimator and next time, we’ll discuss
its properties.
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Set Up

As always, assume random sampling Wi ∼ F i.i.d for i = 1, . . . , n. We
specify a set of distributions

{Pθ : θ ∈ Θ}.

Each distribution has a density that is well-defined. We denote it f (w |θ).
For a given θ, f (w |θ) is the likelihood function.

We say the model is well-specified if for some θ∗ ∈ Θ,

F = Pθ∗ .

If it is possible that there does not exist such a θ∗, we refer to f as a
pseudo-likelihood or a quasi-likelihood.
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Set Up

We could also set this up in terms of conditional likelihoods. That is,
divide Wi into Yi ,Zi and then we model the distribution of Yi |Zi . Our
family of distributions

{Pθ : θ ∈ Θ}

is now a set of conditional likelihood functions.
Example: Normal linear model – we modeled Yi |Xi ∼ N(X ′i β, σ

2).
So, the set of distributions was the normal family with mean
parameterized by β and variance σ2.
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MLE: Definition
We observe W1, . . . ,Wn. Fix a particular value of θ. The joint density of
W1, . . . ,Wn|θ is given by

f (W1, . . . ,Wn|θ) = Πn
i=1f (Wi |θ).

The maximum likelihood estimator is the value of the parameter that
maximizes the likelihood of the observed data.

θ̂MLE = arg max
θ∈Θ

Πn
i=1f (Wi |θ).

Equivalently, we can take the log of the objective function because it is a
monotone function. And define the log-likelihood

Ln(W1, . . . ,Wn|θ) =
n∑

i=1

log(f (Wi |θ))

Then,

θ̂MLE = arg max
θ∈Θ

Ln(W1, . . . ,Wn|θ).
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Probit and Logit applications

Not going to cover this in section – I assume this is material you have seen
before. If not, make sure to read these sections of Note 10.

Next time: What are the properties of MLE? How can we derive its limit
distribution?
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Entropy

We typically work with discrete random variables in this class, so all the
definitions are presented for the discrete case. Of course, they generalize.

Let X be a random variable with values in X and pmf p(x). The entropy
H(X ) is

H(X ) = −
∑
x∈X

p(x) log p(x) = E [log
1

p(X )
].

We typically have the log be base 2. In this case, entropy is expressed
in bits. When it is the natural log, it is measured in “nats.”
Think of entropy as encoding the amount of “information” that can be
learned from a random variable or how much uncertainty is present.
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Entropy

You can arrive at this axiomatically. Suppose we wish to measure the
amount of information that is generated from observing an event occur
that has probability p.

Let I (p) be the information function. We want it to satisfy:
(1) Information is non-negative, I (p) ≥ 0.
(2) I (1) = 0 – events that always occur produce no information.
(3) If two events are independent with probabilities p1, p2, then
the information produced by observing both events occur is
additive: I (p1 · p2) = I (p1) + I (p2).
(4) Information is monotone decreasing – more likely events
produce less information.

You can show that I (p) = − logb(p) for some base b.
Then, the entropy of an random variable H(X ) is the average information
it produces.
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The information inequality

Let F ∗ denote the true population distribution and suppose that F ∗ has an
associated density f ∗. Let EF denote the expectation with respect to the
true population distribution.

If the likelihood function is mis-specified, then there does NOT exist θ ∈ Θ
such that f ∗(w) = f (w |θ).

Information Inequality: For all θ ∈ Θ,

EF [log f (Wi |θ)] ≤ EF [log f ∗(Wi |θ)].

This is also known as the Shannon-Kolmogorov Information Inequality.
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Kullback Leibler distance or relative entropy
The relative entropy or Kullback Leibler distance between two
probability mass functions p(x) and q(x) is defined as

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep[log

p(X )

q(X )
].

This measures the directed distance from p to q – it is always
non-negative and zero if and only if p = q. It is a directed distance
because it is not symmetric. In statistics, it measures the expected
logarithm of the likelihood ratio between two distributions.
A larger Kullback Leibler distance or relative entropy =⇒ more
information is lost when we approximate p by q or similarly the worse
an approximate q provides for p.

We could also write the information inequality as

D(f ∗||f (·|θ)) ≥ 0.
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Proof of information inequality

Define Q = f (Wi |θ)
f ∗(Wi )

. By Jensen’s inequality, we have that

EF [logQ] ≤ log Ef [Q].

Note that

log Ef [Q] = log

∫
f (w |θ)

f ∗(w)
f ∗(w)dw

= 0.

So, we have that

EF [logQ] = EF [log f (Wi |θ)− log f ∗(Wi )] ≤ 0.

The result follows.
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Optimal Tests
It will feel like we are completely changing gears here. We’re now going to
consider the problem of constructing optimal hypothesis tests. The solution
to this problem will be deeply connected to relative entropy.

Suppose that the distribution of Yi is discrete with finite support. We
observe n observations Y = (Y1, . . . ,Yn) and we assume the data are i.i.d.
with

P(Yi = αj |θ) = θj j = 1, . . . , J.

The parameter space is the unit simplex with
Θ = {θ ∈ RJ : θj ≥ 0,

∑J
j=1 θj = 1}. The likelihood function is then

f (y |θ) = Πn
i=1P(Yi = yi |θ)

= Πn
i=1ΠJ

j=1θ
1{Yi=αj}
j

= ΠJ
j=1θ

nj
j , nj =

J∑
j=1

1{Yi = αj}.
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Optimal Tests

We wish to test the following null against the alternative

H0 : θ = θ(0), Ha : θ = θ(1).

For a test procedure d , we define
Type 1 Error: e1(d) = P{Reject null|θ = θ0}.

Type 1 Error =⇒ Shawshank Redemption.
The probability of Type 1 error is referred to as the size of a test.

Type 2 Error: e2(d) = P{Accept null : θ = θ1}.
Type 2 Error =⇒ OJ Simpson.
The probability that the null is rejected given that the alternative
is true is referred to as the power of a test.

Our test procedure will be based on realizations of the r.v. Y . They will
specify a critical region W such that if Y ∈W , we reject H0 and
otherwise we fail to reject H0. How do we choose the critical region?



19/41

Optimal Tests – Neyman-Pearson Lemma

Classical approach to hypothesis testing: We choose the critical region to
maximize power subject to a size constraint.

Minimize the probability of type 2 error given a pre-specified rate of
type 1 error.

Likelihood ratio tests: For some constant c ,
H0 is accepted if f (y |θ1) < cf (y |θ0).
Ha is accepted if f (y |θ1) > cf (y |θ0).

Theorem: Neyman-Pearson Lemma
If d is a test procedure with e1(d) ≤ e1(dLR), then e2(d) ≥ e2(dLR).
If e1(d) < e1(dLR), then e2(d) > e2(dLR).
Equivalently, subject to a size constraint α, power is maximized by
choosing a critical region based on the likelihood ratio
f (y |θ1)/f (y |θ0), where the constant c is chosen to satisfy the size
constraint:

P(f (y |θ1)/f (y |θ0)|θ = θ0) = α.
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Neyman-Pearson Lemma
The Neyman-Pearson Lemma shows that the likelihood ratio is admissible –
it cannot be domianted by some other test.

We can relate likelihood ratio tests to the Kullback Leibler distance. Let

f0(αj) = θ0
j , f1(αj) = θ1

j , f̂ (αj) = nj/n.

Then, D(f̂ ||f0),D(f̂ ||f1) is the distance from the empirical distribution to
the distribution under the null and the distribution under the alternative.
The likelihood ratio test simply compares these distances.

We have that (see the notes for the derivation):

1
n

log
f (y |θ1)

f (y |θ0)
= D(f̂ ||f0)− D(f̂ ||f1).

So, we have that

LR > c ⇐⇒ D(f̂ ||f0)− D(f̂ ||f1) >
1
n

log(c).
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Best Approximation

Define
θF = arg max

θ∈Θ
EF [log f (Wi |θ)].

Or equivalently,

θF = arg min
θ∈Θ

EF [log
f ∗(Wi )

f (Wi |θ)
] = arg min

θ∈Θ
K (f ∗.f (·|θ)).

That is, θF minimizes the KL distance from the true population density
over all possible densities in the model. If the model is well-specified such
that f ∗ = f (·|θ∗) for some θ∗ ∈ Θ, then θF = θ∗.

We’ll argue that the MLE is consistent for this θF , which we call the best
approximation.
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MLE is consistent for the best approximation

The MLE solves

θ̂ = arg max
θ∈Θ

1
n

n∑
i=1

log f (Wi |a).

Under some regularity conditions (you’ll see these in 2140), we can obtain
a uniform law of large numbers:

sup
a∈Θ
|1
n

n∑
i=1

log f (Wi |a)− EF [log f (Wi |a)]| p−→ 0.

Then, it can be shown that

θ̂
p−→ θF .
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How do we do inference on the MLE?
We can use our GMM results!

The best approximation satisfies

θF = arg max
θ∈Θ

EF [log f (Wi |θ)].

The FOC is

EF [ψ(Wi , θF )] = 0, ψ(Wi , θ) =
∂ log f (Wi |θ)

∂θ
.

ψ is a moment function that equals zero at θ = θF . It is referred to as the
score function.

Because dim(ψ) = dim(θ), we are just-identified and can set D̂ = I . The
GMM estimator then satisfies

1
n

n∑
i=1

ψ(Wi , θ̂) = 0.
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MLE – asymptotic distribution

We have that
√
n(θ̂ − θF )

d−→ N(0,Λ),

where

Λ = H−1ΣH−1,

H = EF [
∂ψ(Wi , θF )

∂θ′
] = EF [

∂2 log f (Wi |θF )

∂θ∂θ′
]

Σ = EF [ψ(Wi , θf )ψ(Wi , θF )′] = EF [
∂ log f (Wi |θF )

∂θ

∂ log f (Wi |θF )

∂θ′
].

If the model is well-specified, then H = Σ and so, the asymptotic variance
simplifies to be H−1, which is the inverse of the information matrix.
Well-specified MLE asymptotically achieves the Cramer-Rao lower bound.
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Multivariate Normal Linear Model

We begin by extending the normal linear model to the case in which Yi is
an M × 1 vector. The parameter is now θ = (Π,Σ), where Π is a K ×M
vector and Σ is an M ×M symmetric, positive definite matrix.

The likelihood function for a single observation y is

f (y |x , θ) = (2π)−M/2det(Σ)−1/2 exp{−1
2

(y − Π′x)′Σ−1(y − Π′x)},

where y is M × 1 and x is K × 1.

We define the best approximation, which solves

θF = (ΠF ,ΣF ) = arg max
Π,Σ
− log det(Σ)− EF [(Yi − Π′Xi )

′Σ−1(Yi − Π′Xi )].
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Multivariate normal linear model and best approximation

Define Π∗ = (EF [XiX
′
i ])−1EF [XiY

′
i ]. It is simple to show that

ΠF = Π∗.

We can also show that

ΣF = Σ∗ = EF [(Yi − Π∗′Xi )(Yi − Π∗′Xi )
′].

See the notes for both arguments.
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Robustness of Quasi-MLE
Suppose that there are additional restrictions placed on Σ,Π. We express
these by specifying functions

Π(θ),Σ(θ) with θ ∈ Θ.

We can analogously write the likelihood as

f (y |x , θ) = (2π)−M/2det(Σ(θ))−1/2 exp{−1
2

(y − Π(θ)′x)′Σ(θ)−1(y − Π(θ)′x)}

and the best approximation solves

θF = arg max
θ∈Θ
− log det(Σ(θ))− EF [(Yi − Π(θ)′Xi )

′Σ(θ)−1(Yi − Π(θ)′Xi )].

The robustness property means that: even if the population distribution is
not a multivariate normal provided that the mean, covariance matrix
functions are well-specified i.e.

Σ∗ = Σ(θ∗),Π∗ = Π(θ∗) for some θ∗ ∈ Θ,

then

ΘF = Θ∗.
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Minimum Distance Estimation

We now transition to the final tool for estimation and inference that we’ll
cover in this course. The set-up will be different but the asymptotic
arguments will be familiar.

Our inputs are some sample statistics.
Think of these as unrestricted estimates such as reduced-form
least-squares estimates or unrestricted sample covariances.

Minimum distance will be a tool for imposing restrictions on these
unrestricted sample statistics.

Before going to the general set-up, I want to offer a simple example.
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Minimum Distance Estimation and IV

Suppose our model is

Yi = Xiβ + Ui ,

Xi = Ziπ + Vi ,

where Ui ,Vi are correlated and E [ZiVi ] = E [ZiUi ] = 0. The model implies
restrictions on the reduced-form regressions. We have that

E ∗[Yi |Zi ] = γZi , with γ = β · π,E ∗[Xi |Zi ] = λZi , with λ = π

So, one way to estimate β, π would be with minimum distance. First,
construct estimates of the reduced-form coefficients

γ̂ =

∑n
i=1 YiZi∑n
i=1 Z

2
i

, λ̂ =

∑n
i=1 XiZi∑n
i=1 X

2
i

.
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Minimum Distance Estimation and IV

Then, we estimate π, β by solving

arg min
b,p

(
γ̂ − b · p
λ̂− p

)′
C

(
γ̂ − b · p
λ̂− p

)
,

for some weight matrix 2× 2 C . That is, we estimate β, π by finding the
parameter values that best approximate the unrestricted reduced-form
coefficients while imposing the restrictions of our IV model.

This is all that minimum distance is doing. Keep this example in mind as
it’s a good sanity check as we’re moving along.
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Set up

We are given a statistic π̂ with limit distribution

√
n(π̂ − π)

d−→ N(0,Ω).

We are also given a distance functon h(·, ·), which is continuously
differentiable. We assume that there is a unique parameter γ such that

h(π, γ) = 0.

Here, we have that h is L× 1, γ is K × 1 and L ≥ K .
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Set up

The minimum distance estimator solves

γ̂ = arg min
a

h(π̂, a)′Ĉh(π̂, a),

where Ĉ converges in probability to a L× L non-random, positive definite,
symmetric matrix C . The FOC is

(∂h(π̂, γ̂)/∂a)′Ĉh(π̂, γ̂) = 0.

So, we could also write the minimum distance estimator as satisfying

D̂h(π̂, γ̂) = 0, D̂ = (∂h(π̂, γ̂)/∂a)′Ĉ .
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Minimum distance – limit distribution

The derivation of the limiting distribution is very simple and follows our
argument from GMM.

I’ll leave this for you to review in the notes.



39/41

Outline

Maximum Likelihood Estimation
Set up
Probit and Logit
Information Inequality
Neyman-Pearson Lemma and Optimal Tests
Best Approximation
Inference for MLE
Multivariate Normal Linear Model and Robustness

Minimum Distance Estimation
Example
Set up
Delta Method



40/41

Delta Method

Suppose we wish to derive the asymptotic distribution of a non-linear
function of parameters.

Consider γ = g(π) ∈ RK for some continuously differentiable function g .
Suppose that

√
n(π̂ − π)

d−→ N(0,Ω).

Then, γ̂ = g(π̂) is a consistent estimator. Suppose π ∈ RL What is it’s
asymptotic distribution?

We use the delta method to derive it and an easy way to derive the delta
method is through minimum distance estimation.
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Delta Method and Minimum Distance

Define the distance function h(π̂, a) = g(π̂)− a. The minimum distance
estimator is trivially γ̂) = g(π̂). So, we have that

h(π̂, γ̂) = 0.

So, we can just set D = I and so, α = −I . We then get that

√
n(γ̂ − γ)

d−→ N(0,Σ), Σ =
∂g(π)

∂π
Ω
∂g(π)

∂π′
,

where this is just from our minimum distance results.
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