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1 Second-Order Stationary Stochastic Processes
Let X1, . . . , XT denote a time series observed over t = 1, . . . , T. For now, this is simply a sequence of
random variables. As notation, we will sometimes denote this by {Xt}T

t=1.

Remark 1.1 (Sampling concept). What does “random sampling” mean for a time series? In cross-sectional
settings, we observe the data X1, . . . , XN , where each observation is drawn i.i.d. from some infinite super-
population. We model the data as a random variables or vectors to capture this random sampling process.

In a time series, we imagine that the observed time series X1, . . . , XT are realizations from some infinitely
long stochastic process, {Xt}. The observed data is simply a finite sub-sequence that we observe from this
underlying stochastic process. As we will, the assumption that the observed time series is stationary or weakly
stationary will play the role of the usual i.i.d. random sampling assumption in cross-sectional settings.

Definition 1.1. Let {Xt} for t = 1, . . . , T be a sequence of random variables.

• {Xt} is stationary if the joint distribution of (Xt+1, . . . , Xt+k) does not depend on t.

• {Xt} is second-order stationary or weakly stationary or covariance stationary if

1. E[Xt] = µ ∀t.

2. Cov(Xt, Xt−k) = γk ∀t.

We call γk = Cov(Xt, Xt−k) the auto-covariance between Xt, Xt−k and

ρk =
Cov(Xt, Xt−k)√
V(Xt)V(Xt−k)

(1)
=

γk

γ0

the auto-correlation between Xt, Xt−k, where (1) follows under second-order stationarity.

Definition 1.2. Let Ft denote the “filtration” generated by the time series Xt. Heuristically, this is just the
time-t “information set” with Ft = {Xt, Xt−1, . . .}. We say the time series Xt is a martingale if

E [Xt | Ft−1] = Xt−1.

We say the time series Zt is a martingale difference sequence (mds) if

E [Zt | Ft−1] = 0.

Notice that if Xt is a martingale, then the series ∆Xt ≡ Xt − Xt−1 is a martingale difference sequence.

We next define the lag-operator. We will use this as notation throughout the course.

Definition 1.3. The lag operator L satisfies

LXt = Xt−1.

We analogously define the operator Lk as

LkXt = Xt−k, ∀k ≥ 0.
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The inverse lag operator L−1 simply shifts the series forward one time period,

L−1Xt = Xt+1, whereL−1LXt = Xt.

A lag polynomial a(L) is defined as

a(L) =
∞

∑
j=0

ajLj,

and so the lag polynomial applied to the time series Xt delivers

a(L)Xt =
∞

∑
j=0

ajXt−j

= a0Xt + a1Xt−1 + a2Xt−2 + . . .

We also refer to a(L)Xt as a linear, time invariant filter of Xt.

Definition 1.4. For a lag polynomial a(L), we refer to a(z) as the z-transform of the lag polynomial, where

a(z) =
∞

∑
j=0

ajzj.

For lag polynomials a(L), b(L), the z-transform satisfies

a(z) + b(z) = c(z), where c(z) =
∞

∑
j=0

cjzj and cj = aj + bj

a(z)b(z) = c(z), where c(z) =
∞

∑
j=0

cjzj, cj =
∞

∑
i=0

aibj−i and bj−i = 0 if j− i < 0.

Remark 1.2 (Inverse of a lag polynomial). Consider a lag polynomial a(L). Can we define its inverse
a(L)−1? In other words, suppose that Yt = a(L)Xt. When is it true that Xt = a(L)−1Yt? This will be true
whenever the roots of |a(z)| lie outside the unit circle.

To see this, consider a(L) = (1− αL) for simplicity. We claim that

(1− αL)−1 =
∞

∑
j=0

αjLj.

Why? First, consider the case where Xt is a sequence of deterministic scalars. We have that(
m

∑
j=0

αjLj

)
(1− αL)Xt =

(
m

∑
j=0

αjLj −
m

∑
j=0

αj+1Lj+1

)
Xt

=
(

1− αm+1Lm+1
)

Xt

= Xt − αm+1Xt−m−1.
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If |α| < 1 and {Xt} is bounded, then as m→ ∞, αm+1Xt−m−1 → 0. So, we conclude that(
∞

∑
j=0

αjLj

)
(1− αL)Xt = Xt

for scalars. Now, let Xt be a mean-zero stochastic process. We have that

Yt =Xt − αXt−1

↪→ Xt =Yt + αXt−1

↪→ Xt =Yt + α(Yt−1 + αXt−2)

...

↪→ Xt =
m

∑
j=0

αjYt−j + αm+1Xt−m−1.

With this, we’ll show that Xt − (∑m
j αjLj)(1− αL)Xt converges in mean-square to zero as m → ∞. We have

that

E

[(
m

∑
j=0

αjLj

)
(1− αL)Xt − Xt

]2

= E

[
(−αm+1Xt−m−1)

2
]

= α2(m+1)
E[X2

t−m−1]

= α2m+2γ0.

Then, provided that |α| < 1 and γ0 < ∞, we have that

E

[(
m

∑
j=0

αjLj

)
(1− αL)Xt − Xt

]2
m.s.−−→ 0

and the claim follows.

We finally define several useful stochastic processes that will appear frequently.

Definition 1.5. A stochastic process {εt} is a white noise process if

1. E[εt] = 0 ∀t,

2. V(εt) = σ2 < ∞ ∀t,

3. Cov(εs, εt) = 0 ∀s 6= t.

We denote a white noise process by εt ∼ WN(0, σ2). An order-p autoregressive process, denoted AR(p), is
defined as

Xt =
p

∑
j=1

ajXt−j + εt, εt ∼WN(0, σ2).
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An order-q moving average process, denoted MA(q), is defined as

Xt =
q

∑
j=0

cjεt−j, εt ∼WN(0, σ2).

Example 1.1. We can easily compute the auto-correlation function of an MA(q) process. For instance, consider
an MA(∞) with

Xt = c(L)εt,

where

E[εt] = 0,

E[εsεt] =

σ2
ε if t = s,

0 otw.

We have that

γk = E[XtXt−k]

= E

[(
∞

∑
j=0

cjεt−j

)(
∞

∑
i=0

ciεt−i−k

)]

=
∞

∑
i=0

cici+kσ2
ε

after some simple algebra.

1.1 The Wold Decomposition

To this point, we introduced the auto-covariance function for a second-order stationary stochastic
process, {γk}. There are other equivalent representations of a second-order stationary process:

• The moving average representation: A second-order stationary process Xt can be written as

Xt = c(L)εt,

where εt is a serially uncorrelated process, meaning E
[
εtεt−j

]
= 0 for all j 6= 0.

• The spectral density representation: More to come on this later.

In this subsection, we will show how to construct the moving average representation from the auto-
covariance function for a second-order stationary process. This is known as the Wold Decomposition.
The proof of the Wold Decomposition is constructive and we will work through each step.1

1Chapter 5 of Brockwell and Davis (1991) provides a full statement and careful proof of this result. A rigorous proof
of the Wold Decomposition requires an investment in setting up an underlying Hilbert Space upon which the time series
Xt lives and in which the projection operator is well-defined. We will take these constructions for granted to focus on the
intuitions and insights of this important result.
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Theorem 1.1 (Wold Decomposition). Let {Xt} be a mean-zero, second-order stationary process. Define

Mt = span(Xt, Xt−1, . . .).

Assume that there is no perfect predictability from the one-step ahead linear forecast, meaning

V (Xt − Proj {Xt |Mt − 1}) > 0.

Then,

Xt = c(L)εt + vt,

where

1. E [εt] = 0, E
[
ε2

t
]
= σ2

ε > 0 and εt ∈ Mt.

2. E [εtεs] = 0 for all s 6=t.

3. The coefficients of the lag polynomial {ci} do not depend on t with c0 = 1.

4. The coefficients of the lag polynomial are square summable with ∑∞
j=0 c2

j < ∞.

5. The series {vt} is deterministic, meaning

vt ∈ M∞ = ∩∞
i=0Mt−i.

Proof. Define

εt = Xt − Proj {Xt |Mt−1} .

By construction, εt ⊥ Mt−1. Denote the residual of the projection of Xt onto its past values as

Xt − Proj {Xt |Mt−1} = a(L)Xt,

where a0 = 1 and aj is the negative of the coefficient on Xt−j in the projection of Xt onto its past values.
Since projection coefficients are simply a function of variances and covariances and Xt is second-order
stationary, this implies that the projection coefficients and therefore the sequence {aj} are both time-
invariant.

With this construction, we now show that each property is satisfied:

1. E [εt] = E [a(L)Xt] = 0 because Xt is mean-zero. Then,

E
[
ε2

t
]
= E

[
(a(L)Xt)

2] = σ2
ε < γ0 < ∞

where the last inequality follows because εt is defined as a projection residual.
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2. Notice that

Proj
{

εt |Xt−j
}
=
E
[
εtXt−j

]
E

[
X2

t−j

] Xt−j.

We know that Proj
{

εt |Xt−j
}
= 0 because εt ⊥ Mt−1 by construction. Therefore, it follows that

E
[
εtXt−j

]
= 0 ∀j.

It then follows that

E
[
εtεt−j

]
= E

[
εta(L)Xt−j

]
= 0

for all j > 0.

3. We have that

c(L)εt = Proj {Xt | εt, εt−1, . . .}

=
E [εtXt]

E
[
ε2

t
] εt +

E [εt−1Xt]

E
[
ε2

t−1

] εt−1 + . . . ,

where the second equality follows because {εt} is serially uncorrelated. Therefore,

ci =
E [εt−iXt]

E
[
ε2

t−i

] =
E [εt−iXt]

σ2
ε

.

Moreover,

c0 =
E [εtXt]

σ2
ε

=
E [εt(εt + Proj {Xt |Mt−1})]

σ2
ε

= σ2
ε /σ2

ε = 1.

4. Next, we have that

V (Xt − c(L)εt) = γ0 − 2E [Xtc(L)εt] +E
[
(c(L)εt)

2
]

= γ0 − 2
∞

∑
j=0

cj
E
[
Xtεt−j

]
σ2

ε

σ2
ε +

∞

∑
j=0

c2
j σ2

ε

= γ0 −
∞

∑
j=0

c2
j σ2

ε

(1)
≥ 0,
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where (1) follows from the no perfect predictability assumption. Therefore, it follows that

∞

∑
j=0

c2
j ≤ γ0/σ2

ε < ∞.

5. Finally, we have that Xt ∈ Mt and εt ∈ Mt. However, notice that

E
[
vtεt−j

]
= E

[
(Xt − c(L)εt)εt−j

]
= E

[
Xtεt−j

]
− cjσ

2
ε = 0

Therefore, vt ⊥ εt−j, and so vt ⊥ span(εt, εt−1, . . .). We conclude that vt ∈ ∪∞
j=0MC

t−j and an
application of DeMorgan’s Law implies vt ∈ ∩∞

j=0Mt−j.

Heuristically, the Wold Decomposition states that if you are given any second-order stationary
process, then we can re-write it as a linear combination of serially uncorrelated innovations. We refer
to the series εt as the Wold innovations.

Remark 1.3 (Wold Decomposition). We now make a series of remarks about the Wold Decomposition:

1. {vt} is a “deterministic” series. What does this mean? A classic example is vt = a cos(bt), where a, b
are random variables that are independent of the process Xt. Throughout the course, we’ll assume that
the series we analyze have no deterministic component or, in jargon, that the series are linearly non-
deterministic.

2. By construction, the Wold Decomposition is unique. We’ll return to this important fact when we discuss
invertibility.

3. The Wold innovations εt are serially uncorrelated but they are not independent. This is because the Wold
innovations are defined as the residuals from a linear projection.

4. The Wold Decomposition shows how to move from the autocovariance function of a second-order station-
ary stochastic process to the moving average representation. We can also use it to go from the moving
average representation to the autocovariance function. Suppose that Xt = c(L)εt, where c(L) is known.
Then,

γj = E
[
XtXt−j

]
=

∞

∑
i=j

cici−jσ
2
ε .

5. The Wold Decomposition began its construction by considering the population projection of Xt onto all
of its past values and writes Xt as a infinitely long moving average of Wold innovations. What if we
truncated this after q lags? That is, define

Xq
t = Proj

{
Xt | εt, εt−1, . . . , εt−q

}
= c0εt + c1εt−1 + . . . + cqεt−q.
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Then,

Xt − Xq
t =

∞

∑
j=q+1

cjεt−j

and

V
(
Xt − Xq

t
)
=

∞

∑
j=q+1

c2
j σ2

ε → 0

as q → ∞. So, Xq
t converges in mean-square to Xt as q grows large. Therefore, for all ε > 0, there exists

a q such that for all q > q

V
(
Xt − Xq

t
)
< ε.

In other words, we can approximate a second-order stationary process arbitrarily well with an MA(q)
process.

6. An analogous result exists for auto-regressive processes. Define

Xp
t = Proj

{
Xt |Xt−1, . . . , Xt−p

}
.

Define

X∞
t = Proj {Xt |Mt−1} .

Then, it can be shown that

E

[(
X∞

t − Xp
t
)2
]
→ 0

as p→ ∞.

1.2 Yule-Walker Equations

The Yule-Walker Equations are a useful tool from computing the autocovariances of an auto-regressive
moving-average (ARMA) process. We say a time series Xt is an ARMA(p, q) if it can be written as

a(L)Xt = b(L)εt,

where a(L) is a p-th order lag-polynomial and b(L) is a q-th order lag-polynomial.
We will work through the Yule-Walker equations for an AR(1) to illustrate the ideas. Consider
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Xt = αXt−1 + εt. Then, the Yule-Walker equations are

E [Xt(Xt − αXt−1)] = E [Xtεt]

E [Xt−1(Xt − αXt−1] = E [Xt−1εt]

E [Xt−2(Xt − αXt−1] = E [Xt−2εt]

...

and so on. These are equivalent to

γ0 − αγ1 = σ2
ε

γ1 − αγ0 = 0

γ2 − αγ1 = 0.

Solving these equations, we see that

γ0 =
σ2

ε

1− α2

γ1 =
ασ2

ε

1− α2

γ2 =
α2σ2

ε

1− α2

and so on.

1.3 Invertibility and Fundamentalness

Time is a strange concept in a stationary or second-order stationary stochastic process. In particular,
for these types of time series, the direction of time is irrelevant. Consider a second-order stationary
process. All of the information about the stochastic process is encoded in its auto-covariance function
and by assumption, this function is time invariant. In particular,

γk = Cov(Xt, Xt−k) = Cov(Xt, Xt+k).

So, in this setting, what does “the past” actually mean?
With this strangeness in mind, return to the Wold Decomposition. In the proof of the Wold De-

composition, we immediately defined the Wold innovations to be the residuals from the projection of
the time series Xt onto its past values Xt−1, Xt−2, . . .. But, there was actually no reason for us to do this
other than that seems this is a natural construction – we are predicting Xt using its past (“observed”)
values. In fact, we could have defined the Wold innovations to be the residuals form the projection of
Xt onto its future values and gone through the exact same proof of the Wold decomposition! So what
is going on here?

Consider an example in which Xt is an MA(1) with

Xt = εt + θεt−1 = (1 + θL)εt.
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Let us compute the auto-covariances of this process. We have that

γ0 = (1 + θ2)σ2
ε

γ1 = θσ2
ε

γk = 0 ∀k ≥ 0.

So, we have that

γ1

γ0
=

θ

1 + θ2 =
θ−1

1 + θ−2 .

We can construct an observationally equivalent series X′t that has the exact same auto-covariances as Xt.
In particular, define

X′t = (1 + θ−1L)ηt, where ηt = εt/θ−1.

Then, notice that the auto-covariances of X′t are

γ′0 = (1 + θ−2)(σ2
ε /θ−2) = (1 + θ2)σ2

ε

γ′1 = θσ2
ε

γ′k = 0 ∀k ≥ 0.

Think of X′t as the “evil data” of the original time series Xt. From the observed auto-covariances, we
cannot tell whether the observed data was generated by Xt or its evil twin X′t.

Suppose that |θ| < 1. Then, we have that

Xt = (1 + θL)εt =⇒ εt = (1 + θL)−1Xt

=
∞

∑
j=0

(−θ)jXt−j ∈ Mt.

Since εt ∈ Mt, it must be the Wold innovations that we defined in the proof of the Wold decomposition.
We call these errors fundamental. Now, consider the evil twin X′t. We have that

X′t = (1 + θ−1L)ηt.

What happens if we try to invert this lag polynomial, (1 + θ−1L)? This operator will not be well-
defined because it will not be a convergent series as |θ| < 1 means that |θ−1| > 1. However, we can
use the following trick

θL−1X′t = θL−1(1 + θ−1L)ηt

= (θL−1 + 1)ηt.

We can invert the lag polynomial (θL−1 + 1), where L−1 is the forward-shift operator. Therefore, we
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have that

ηt = (1 + θL−1)−1θL−1X′t

= θ
∞

∑
j=0

(−θ)jL−jX′t+1

= θ
∞

∑
j=0

(−θ)jX′t+j+1.

That is, ηt is the residual from the projection of X′t onto its future values! We call this a non-fundamental
error.

This issue of fundamentalness is important. We will return to it when we discuss structural vector
auto-regressions and dynamic causal effects.

1.4 Spectral density and spectral analysis

We typically write a weakly stationary time series in a form like

Xt = µ +
∞

∑
j=0

ψjεt−j

and then analyze its auto-covariances. This is known as analyzing the time series in the time domain.
We’ll now show that we can also express a weakly stationary time series as

Xt = µ +
∫ π

0
α(ω)cos(ωt) dω +

∫ π

0
δ(ω)sin(ωt) dω.

We then wish to study the relative importance of cyclical behavior at different frequencies. This is
known as analyzing the time series in the frequency domain or spectral analysis.

Let {Xt} be a weakly stationary process with E[Yt] = µ, γj = Cov(Xt, Xt−j). Additionally assume
that the auto-covariances are absolutely summable with

∞

∑
j=0
|γj| < ∞.

The auto-covariance generating function is defined as

γ(z) =
∞

∑
j=−∞

γjzj.

Example 1.2 (MA(∞)). The auto-covariance generating function of Xt ∼ MA(∞), where Xt = c(L)εt is
simply

γ(z) = σ2
ε c(z)c(z−1).

If we divide the auto-covariance generating function by 2π and evaluate it at z = e−iω, then this
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is known as the population spectrum of X with

SX(ω) =
1

2π

∞

∑
j=−∞

γje−iωj, i =
√
−1

=
1

2π
γ(e−iω).

In other words, the population spectrum SX(ω) of Xt is simply the discrete fourier transformation of
its auto-covariance generating function. Therefore, from the population spectrum, we can recover the
auto-covariances by simply applying the inverse fourier transformation. We have that

∫ π

−π
SX(ω)eiωkdω =

∫ π

−π

1
2π

∞

∑
j=−∞

γje−iωjeiωkdω

=
∫ π

−π
γj

1
2π

∞

∑
j=−∞

e−iωjeiωkdω

= γk.

Notice that this implies that

γ0 = V(Xt) =
∫ π

−π
SY(ω) dω.

This gives rise to the interpretation of the population spectrum as providing a decomposition of the
portion of the variance of Xt that is associated with each frequency. We will unpack this idea more in
the next section.

Example 1.3 (Spectrum of MA process). Suppose Xt = c(L)εt. Recall that γ(z) = c(z)c(z−1)σ2
ε . Then,

SX(ω) =
1

2π
c(e−iω)c(eiω)σ2

ε

= ‖c(eiω)‖2 σ2
ε

2π
,

where ‖ · ‖ denotes the complex conjugate.

Example 1.4 (Spectrum of AR process). Suppose that a(L)Xt = εt and a(L)−1 exists. Then, Xt = a(L)−1εt

and applying the previous result, we see that

SX(ω) =
1

‖a(eiω)‖2
σ2

ε

2π
.

Example 1.5 (Spectrum of an AR(1)). Consider Xt = αXt−1 + εt and define a(L) = (1 − αL). Then,
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applying our previous result, we have that

SX(ω) =
σ2

ε /2π

‖1− αeiω‖2

=
σ2

ε /2π

(1− αeiω)(1− αe−iω)

=
σ2

ε /2π

1 + α2 − 2α cos(ω)
,

where the last equality followed by multiplying the denominator out and applying Euler’s formula (recall
e−iωj = cos(ωj)− i sin(ωj)).

Proposition 1.1. Properties of the population spectrum The population spectrum SX(ω) has the following
properties:

1. SX(ω) is a real-valued function.

2. SX(ω) is symmetric around ω = 0 and is periodic with period equal to 2π, meaning

SX(ω) = SX(ω + 2πk)

for k = ±1,±2, . . .

Proof. We can re-write the population spectrum as

SX(ω) =
1

2π

∞

∑
j=−∞

γje−iωj

=
1

2π

∞

∑
j=−∞

γj (cos(ωj)− i sin(ωj)) .

Since Xt is second-order stationary, γj = γ−j. Recall that sin(x) = − sin(−x). Therefore, the popula-
tion spectrum simplifies to

1
2π

∞

∑
j=−∞

γj cos(ωj).

The results then follow from properties of the cosine function.

Because the population spectrum is symmetric around ω = 0 and is periodic with period 2π, it is
sufficient to examine its properties over ω ∈ [0, π].
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1.4.1 The population spectrum as an “asymptotic diagonalization” of the auto-covariance matrix

Define the auto-covariance matrix Γ of Xt as

ΓT = E




X1

X2
...

XT


(

X1 X2 . . . XT

)
 ,

whose (i, j)-th entry is γ|i−j|. We will now show that the spectrum is an “asymptotic diagonalization”
of this covariance matrix. That is, we’ll show that we can construct a basis of eigenvectors that will be
made up of cosine and sine functions

e′j(ω) = (e−iω, . . . , e−iωT),

whose lengths will equal the spectrum evaluated at ω asymptotically, ‖e′j(ω)‖2 ≈ SX(ω). Moreover,
we’ll consider a particular orthonormal eigenbasis in which we choose the values of ω to be ωj =

2π j/T.
We begin with a simple result that we will use throughout this subsection.

Lemma 1.1. Let Xt be a second-order stationary process with absolutely summable auto-covariances. That is,

∞

∑
u=0
|γu| < ∞.

Let WT(u) ≤ 1 be a sequence of weight functions and assume that

WT(u)→W(u)

pointwise in u. Then,

T−1

∑
u=−(T−1)

WT(u)γu →
∞

∑
u=−∞

W(u)γu.

Proof. This result is an application of the dominated convergence theorem.2 We have that

WT(u)γu →W(u)γu

pointwise for all u. Moreover,

|WT(u)γu| ≤ |γu|

for all u and T. The result follows by dominated convergence.
2Heuristically, the dominated convergence theorem states: Suppose that fn → f pointwise and that fn is dominated by

an integrable function g, | fn| ≤ g for all n. Then,
∫

fndµ→
∫

f dµ, where µ is some measure.
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Now, define the function

dX(ω) =

√
1
T

T

∑
t=1

Xte−iωt.

Remark 1.4. Where does this come from? Define the series

e(ω)′ = (e−iω·1, e−iω·2, . . . , e−iωT).

Then, the coefficient in the projection of X onto e(ω) is given by

β =
〈e(ω), X〉
〈e(ω), e(ω)〉 =

1
T

T

∑
t=1

Xte−iωt.

Therefore, the function dX(ω) is simply
√

Tβ.

With this in hand, we’ll consider two calculations. The first calculation computes E
[ 1

2π‖dX(ω)‖2].
We have that

E

[
1

2π
‖dX(ω)‖2

]
=

1
2π
E

∥∥∥∥∥
√

1
T

T

∑
t=1

Xte−iωt

∥∥∥∥∥
2


(1)
=

1
2π
E

[
1
T

T

∑
t=1

T

∑
s=1

XtXse−iωteiωs

]

=
1

2π

1
T

T

∑
t=1

T

∑
s=1

γt−se−iω(t−s)

=
1

2π

1
T

T−1

∑
u=−(T−1)

(T − |u|) γue−iωu, u = t− s

=
1

2π

T−1

∑
u=−(T−1)

(1− |u/T|) e−iωu︸ ︷︷ ︸
WT(u)

γu

(2)→ 1
2π

∞

∑
u=−∞

e−iωuγu = SX(ω),

where (1) uses that ‖dX(ω)‖2 = dX(ω)′dX(ω) and (2) applies Lemma 1.1, where WT(u) = (1− |u/T|) e−iωu T→∞−−−→
e−iωu pointwise in u. Now, we can use Remark 1.4 to interpret this calculation. Recall that dX(ω) can
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be thought of as
√

T times the coefficient in the projection of X onto the series e(ω). We have that

‖dX(ω)‖2 =

∥∥∥∥∥
√

1
T

T

∑
t=1

Xte−iωt

∥∥∥∥∥
2

=

∥∥∥∥∥
√

1
T

T

∑
t=1

Xt(cos(ωt)− i sin(ωt))

∥∥∥∥∥
2

=

(√
1
T

T

∑
t=1

Xt(cos(ωt)− i sin(ωt))

)(√
1
T

T

∑
t=1

Xt(cos(ωt) + i sin(ωt))

)

=

(√
1
T

T

∑
t=1

Xt cos(ωt)

)2

+

(√
1
T

T

∑
t=1

Xt sin(ωt)

)2

Now, consider the choice ω = 2π j
T for some integer j. Consider the regression of Xt onto 1√

jπ
cos(ωt)

and 1√
jπ

sin(ωt) for this choice of ω. We have that

β̂ =

(
β̂1

β̂2

)
=

(
1
T ∑T

t=1(jπ)−1 cos2(ωt) 1
T ∑T

t=1(jπ)−1 cos(ωt) sin(ωt)
1
T ∑T

t=1(jπ)−1 cos(ωt) sin(ωt) 1
T ∑T

t=1(jπ)−1 sin2(ωt)

)−1
 1

T ∑T
t=1

1√
jπ

Xt cos(ωt)
1
T ∑T

t=1
1√
jπ

Xt sin(ωt).


Notice that as T grows large, 1

T ∑T
t=1(jπ)−1 cos2(ωt)→ (jπ)−1

∫ 2π j
0 cos2(z)dz = 1, 1

T ∑T
t=1(jπ)−1 sin2(ωt)→

(jπ)−1
∫ 2π j

0 sin2(z)dz = 1, 1
T ∑T

t=1(jπ)−1 sin(ωt) cos(ωt) → (jπ)−1
∫ 2π j

0 sin(z) cos(z)dz = 0. So, for
large T, we have that

√
jπβ̂ ≈

(
1
T ∑T

t=1 Xt cos(ωt)
1
T ∑T

t=1 Xt sin(ωt).

)

So, with this calculation, we can interpret ‖dX(ω)‖2 as

‖dX(ω)‖2 ≈ π jTβ̂2
1 + π jTβ̂2

2,

In the second calculation, we will consider the “off-diagonal” cross-terms. For this calculation,
additionally assume that ωj =

2π j
T and we’ll compute 1

2πE

[
dX(ωj)dX(ωk)

]
. We have that

1
2π
E

[
dX(ωj)

′dX(ωk)
]
=

1
2π

1
T

T

∑
t=1

T

∑
s=1
E [XtXs] e−i 2π j

T tei 2πk
T s

=
1

2π

1
T

T

∑
t=1

T

∑
s=1
E [XtXs] e−i 2π j

T (t−s)ei 2π(k−j)
T s

Now, let u = t− s. Then, substituting this in, we get that

1
2π
E

[
dX(ωj)dX(ωk)

]
=

1
2π

T−1

∑
u=−(T−1)

γue−i 2π j
T u

(
1
T

T

∑
s=1

ei 2π(k−j)
T s

1 {1 ≤ s, s + u ≤ T}
)

,
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where

WT(u) = e−i 2π j
T u

(
1
T

T

∑
s=1

ei 2π(k−j)
T s

1 {1 ≤ s, s + u ≤ T}
)
→
∫ 1

0
e−i(2π)(j−k)r dr = 0

as T → ∞ because j 6= k. Therefore, applying Lemma 1.1, we see that the diagonal terms converge to
zero in expectation as T → ∞.

Remark 1.5. Where does this choice of ωj come from? For j = 1, . . . , q, consider the discrete series

e(j)′ =
(

e−i
2π j
T ·1, e−i

2π j
T ·2, . . . , e−i

2π j
T ·T

)
.

Notice that for j 6= k, these series are orthogonal. That is,

〈e(j), e(k)〉 =
T

∑
t=1

e−i
2π j
T tei 2πk

T t

=
T

∑
t=1

e−i 2π
T (j−k)t

(1)
=

1− e−i(2π)(j−k)

1− e−i 2π
T (j−k)

.

For j 6= k, Euler’s formula shows that the numerator equals zero and the denominator is non-zero. Therefore,
these are orthogonal if j 6= k. Next, notice that for j = k, we have that

〈e(j), e(j)〉 =
T

∑
t=1

e−i
2π j
T tei

2π j
T t = T.

Collect these series into a T × q matrix

E =
(

e(1) e(2) . . . e(q)
)

By the calculation above, we have shown that

E′E = T · Iq.

Therefore, the coefficients in the projection of X onto the matrix E are defined as

(E′E)−1E′X =


1
T ∑T

t=1 Xte−i 2π
T t

1
T ∑T

t=1 Xte−i 2π
T ·2·t

...
1
T ∑T

t=1 Xte−i 2π
T ·T·t


By this construction, we have that

√
T times the coefficient on the series e(j) in the projection of Xt onto E is

given by dX(ωj).
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1.4.2 The spectrum and long-run variance

Another the spectrum is an important object is because of its connection to the long-run variance of
the time series. In particular, consider the variance of the sample mean, X̄ = T−1 ∑T

t=1 Xt. Assume
that Xt is mean-zero for simplicity, and so we have that

T ·V (X̄) = TE

( 1
T

T

∑
t=1

Xt

)2


= T

(
T−2

T

∑
t=1

T

∑
s=1
E [XtXs]

)

=
T−1

∑
−(T−1)

(1− | u
T
|)γu →

∞

∑
−∞

γu = SX(0).

We refer to the spectrum evaluated at zero as the long-run variance. Constructing an estimator of this
object will be central to constructing standard -errors in time series settings.

1.5 Linear filtering

A linear filter b(L) is a linear operator on the time series Xt. The filtered time series is simply

Yt = b(L)Xt.

It is much easier to understand what a filter is doing by analyzing its behavior in the frequency do-
main.

Lemma 1.2. Let Xt be a second-order stationary time series and define Yt = b(L)Xt. Then,

SY(ω) = ‖b(eiω‖2SX(ω),

where ‖b(eiω‖2 is called the gain of the filter.

Proof. Apply the Wold Decomposition to write Xt = c(L)εt. Then, Yt = b(L)c(L)εt, and so Yt is a
linear filter of the Wold innovations and just a moving average. Therefore, we know that

SX(ω) =
1

2π
‖c(eiω‖2σ2

ε

SY(ω) =
1

2π
‖b(eiωc(eiω‖2σ2

ε ,

and the result follows directly.

Lemma 1.2 is stated for a second-order stationary time series but can be generalized to cover non-
stationary time series processes. We assumed second-order stationarity to simplify the proof (it al-
lowed us to use the Wold decomposition). Why is this an interesting result? We can think of Yt as
heightening or dampening the spectrum of Xt depending on what gain ‖b(eiω‖2 that is selected. In
other words, the filter will screen out variation in the time series Xt at different frequencies according
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to what gain function is selected. In macroeconomic applications, we often select a filter that is associ-
ated with a gain that will filter out high frequency variation in the time series, which we often think is
measurement error and noise. We also may select a filter to select only the variation in the time series
that is associated with business cycles.

Example 1.6. Year-over-year filter Suppose that Xt is a quarterly time series. The year-over-year filter is defined
as

Yt =
Xt + Xt−1 + Xt−2 + Xt−3

4
− Xt−4 + Xt−5 + Xt−6 + Xt−7

4
.

It is simply the difference in the average of the time series over the last year relative to one year ago. We can
write this more compactly as

Yt =
1
4
(1− L4)(1 + L + L2 + L3)Xt.

Example 1.7. Baxter-King Filter Let b(L) = ∑
q
k=−q bkLk be a forward and backward looking lag polynomial.

Let [ω0, ω1] ⊆ [0, π] be the range of frequencies of interest. The Baxter-King filter chooses the coefficients of
b(L) to solve

b∗ = min
b

∫ π

0

(
‖b(eiω)‖2 − 1{ω0 ≤ ω ≤ ω1}

)
dω.

That is, the ideal filter would simply pick out the frequencies between ω0, ω1. The Baxter-King filter computes
the moving average whose gain provides the best mean-square approximation to the ideal “band-pass” filter. The
filtered series is then

Yt = b∗(L)Xt.

Example 1.8. Butterworth Filter Let a(L) = ∑
q
k=0 akLk be a lag polynomial and define a(L)−1 to be its

associated inverse. Again, define [ω0, ω1] ⊆ [0, π] be the range of frequencies of interest. The Butterworth
filter solves an analogous problem to the Baxter-King filter

min
a

∫ π

0

(
‖a(eiω)−1‖2 − 1{ω0 ≤ ω ≤ ω1}

)
dω.

That is, the Butterworth filter computes the auto-regression whose gain provides the best mean-square approxi-
mation to the ideal band-pass filter. The filter series satisfies

a∗(L)Yt = Xt.

Example 1.9. The Hodrick-Prescott filter solves

min
gt

T

∑
t=1

(Xt − gt)
2 + λ

T

∑
t=1

(∆gt − ∆gt−1)
2 ,

where λ > 0 is a tuning parameter that determines its smoothness penalty, which penalizes gt based on a
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discrete version of the second derivative. Hamilton (2018) recently notes several problems with the Hodrick-
Prescott filter: (1) it often introduces spurious dynamics and (2) The fit of the resulting filtered values at the end
of the sample are quite poor.

Moreover, Hamilton (2018) shows that the HP filter is the optimal solution to a particular signal extraction
problem. Suppose that Xt = gt + ct, where gt satisfies ∆gt = ∆gt−1 + νt, νt ∼ (0, σ2

ν ) and ct ∼ (0, σ2
c )

The HP filter is the optimal filter for extracting the unobserved component gt in this model, where the penalty
parameter λ is set as a function of the variances of the noise σ2

ν , σ2
c . While it is nice that the HP filter can

be given this interpretation, it is unclear whether this signal extraction problem is particularly relevant to the
problem of extracting variation associated business cycle frequencies in macroeconomic data.

1.6 Multivariate extensions

We provide simple extensions of our results for second-order stationary time series to a random vector.
A more detailed discussion of these ideas can be found in Chapter 10 of Hamilton (1994) and Chapter
11 of Brockwell and Davis (1991). Let Xt be an n× 1 random vector. We say that Xt is second-order
stationary or covariance stationary or weakly stationary if its mean vector is time invariant and its
auto-covariance matrices are also time-invariant. That is,

E [Xt] = µ,

Cov(Xt, Xt−j) = E
[
(Xt − µ)(Xt−j − µ)′

]
= Γj ∀t.

Note that for a covariance stationary vector process, we have that

Γ′j = Γ−j. (1)

Why is this the case? We have that

Cov(Xt+j, Xt) = E
[
(Xt+j − µ)(Xt − µ)′

]
= Γj =⇒ Γ′j = E

[
(Xt − µ)(Xt+j − µ)′

]
= Γ−j.

Importantly, we can define the population spectrum for a multivariate time series as well. If the
autocovariances are absolutely summable, then the autocovariance generating function is

Γ(z) =
∞

∑
k=−∞

Γkzk,

where z is a complex scalar. Note that this maps a complex scalar into a K × K matrix of complex
numbers. Then, with the same calculations as the univaraite case, we define the population spectrum
as

SX(ω) =
1

2π
Γ(e−iω)

=
1

2π

∞

∑
k=−∞

Γke−iωk.
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The population spectrum has the same properties as before. For example, we can show that∫ π

−π
SX(ω)eiωk dω = Γk.

For a complex number z, let z̄ denote its complex conjugate. Moreover, we have that the multivariate
population spectrum satisfies

SX(ω)
′
=

1
2π

ΓX(e−iω)
′

=
1

2π
ΓX(eiω)′

(1)
=

1
2π

ΓX(e−iω) = SX(ω),

where (1) used the fact that Γj = Γ′−j for a covariance stationary vector process.

Example 1.10. Let Xt = c(L)εt be a vector moving average. Then,

SX(ω) =
1

2π
c(eiω)Σεc(e−iω)′,

where Σε = E [εtε
′
t].

Similarly, the long-run variance of a second-order stationary vector process is

Ω = lim
T→∞

2πT ·V (X̄)

= Γ(1) = 2πSX(0) =
∞

∑
j=−∞

Γj.

We can also derive a multivariate extension of the Wold Decomposition. For a second-order sta-
tionary vector process, this will take the form

Xt︸︷︷︸
n×1

= c(L)︸︷︷︸
n×n

εt︸︷︷︸
n×1

,

where εt is the vector of Wold innovations and defined as εt = Xt − Proj {Xt |Xt−1, Xt−2, . . .}.
Finally, we define a vector auto-regression. We say that Xt is a vector autoregression of order p,

VAR(p) if
A(L)Xt = εt, A(L) = A0 − A1L− A2L2 − . . .− ApLp.

1.7 A central limit theorem for weakly dependent processes

To this point, we focused on population objects and have not considered estimation and inference.
We will now develop a central limit theorem for a stationary stochastic time series. This will be one
of main tools for constructing tests and confidence intervals in time series. To do so, we will make
sufficient assumptions such that the familiar asymptotic results from cross-sectional settings with in-
dependent data apply to a second-order stationary time series. Intuitively, these assumptions will
place restrictions on the degree of dependence in the time series process. Our discussion in this sec-
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tion follows closely the presentation on pp. 402–405 in Hayashi (2000).

Definition 1.6. Let {Zt} be a time series. We say it is ergodic if for any two bounded functions f : Rk → R

and g : Rl → R

lim
n→∞
|E [ f (Zt, . . . , Zt+k)g(Zt+n, . . . , Zt+n+l)] = |E [ f (Zt, . . . , Zt+k)]E [g(Zt+n, . . . , Zt+n+k)]

In words, ergodicity means that at a long enough horizon, the time series process becomes essen-
tially independent. This places restrictions on the degree of dependence over time and enforces that
it dies off at a long enough horizon, enabling us to provide a central limit theorem for averages of a
time series as T grows large.

We now state a central theorem for a stationary, ergodic stochastic process.

Theorem 1.2. Let Zt be a mean-zero, stationary and ergodic stochastic process. Suppose that Zt satisfies
Gordin’s conditions:

1. E[Z2
t ] < ∞,

2. E
[
E(Zt|Zt−j, Zt−j−1, . . .)

]
→ 0 as j→ ∞,

3. ∑∞
j=0E[r

2
tj]

1/2 < ∞, where rtj = E[Zt|Zt−j, Zt−j−1, . . .]−E[Zt|Zt−j−1, Zt−j−2, . . .].

Then,

1√
T

T

∑
t=1

Zt
d−→ N(0, 2πSZ(0))

as T → ∞, where

2πSZ(0) =
∞

∑
j=−∞

γj

is known as the long-run variance of Zt.

Remark 1.6. Gordin’s condition limit the degree of serial dependence in the series Zt. Condition (1) is simply
a finite variance condition. Condition (2) states that we allow serial dependence but impose that the dependence
dies off as periods become further apart. In other words, data from j periods ago becomes uninformative in
forcasting Zt as j grows large. Condition (3) imposes that moving from time t− j− 1 to t− j reveals information
about time t but again, this dies off as j gets large.

Example 1.11. Suppose that the random variables Zt are i.i.d. across t. Then, Gordin’s conditions hold trivially.

Example 1.12. Suppose that Zt is a martingale difference sequence. Then, since E
[
Zt | Zt−j, . . .

]
= 0, Condi-

tion (2) is satisfied in Gordin’s conditions. Moreover, Condition (3) is satisfied because rtj = 0 for all j > 0.

Example 1.13. Suppose that Zt is a moving average of order q < ∞, meaning Zt = c(L)εt, where εt is
a martingale difference sequence. Then, once j > q, the dependence in the series dies off completely and so,
Condition (2) and Condition (3) are satisfied.
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Example 1.14. Suppose that Zt is an infinite-order moving average, with Zt = c(L)εt, where εt is a martingale
difference sequence and c(L) is invertible. First, we will check Condition (2).

E
[
Zt | Zt−j, . . .

] (1)
= E

[
c(L)εt | εt−j, . . .

]
=

∞

∑
l=j

clεt−l ,

where we were able to changed the conditioning in (1) because c(L) is invertible. Therefore, we have that

E

[
E
[
Zt | Zt−j, . . .

]2
]
= E

( ∞

∑
l=j

clεt−l

)2


=
∞

∑
l=j

c2
l σ2

ε .

Therefore, if the coefficients in the lag polynomial c(L) are square summable meaning ∑∞
j=0 c2

j < ∞, then
Condition (2) is satisfied. Next, note that rtj = cjεt−j and E[r2

tj] = c2
j σ2

ε . Then,

∞

∑
j=1

√
E[r2

tj] =
∞

∑
j=1
|cj|σε.

So, now we additionally need that {ct} be absolutely summable, meaning that ∑∞
j=0 |cj| < ∞.

There are several important comments to make. First, absolute summability of the coefficients in the lag
polynomial is a stronger condition than square summability. It is simple to see this because(

∞

∑
j=0
|cj|
)2

=
∞

∑
j=0

c2
j + ∑

i 6=j
|ci||cj| ≥

∞

∑
j=0

c2
j .

Second, it was crucial that εt was a martingale difference sequence as Gordin’s conditions are about conditional
expectations, not projections. Together, this implies that Gordin’s conditions are not satisfied by the Wold
decomposition. The Wold decomposition applies to any stationary stochastic process and delivers a moving-
average form of Wold innovations, where the Wold innovations are serially uncorrelated and the coefficients in
the lag polynomial are square summable.

Example 1.15. Consider Yt = Xtβ+Ut and define Zt = XtUt. Assume thatE[Ut|Xt] = 0 and so,E[Zt] = 0.
Then, assuming that Zt satisfies Gordin’s conditions,

√
T
(

β̂− β
) d−→ N(0, Σ−1

X ΩΣ−1
X ),

where

ΣX = E[X2
t ], Ω = 2πSZ(0) =

∞

∑
j=−∞

Γj.
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1.8 Auto-regressions, lag-length selection and information criteria

Consider an autoregression
Xt = a1Xt−1 + . . . + ap0 Xt−p0 + ut.

In general, the lag-length p is unknown and may, in fact, be infinite, p = ∞. These pose particular
challenges and we will now discuss each case in turn.

First, suppose that the time series is generated by an infinitely long autoregression and p0 = ∞.
Clearly, in finite samples, we can not estimate an infinitely long autoregression and we must truncate
p somewhere. Moreover, we would like to choose this truncation rule as a function of the size of the
data. In other words, when T is small, we do not want to include many lags but as T grows large, we
want to add more and more lags. How do we choose this truncation rule in a way that will deliver
good asymptotic properties of the resulting estimator? This problem was studied by Berk (1974).3

Berk (1974) focuses on the problem of constructing an estimator of the spectral density of a time series
SX(ω) by using a sequence of auto-regressive approximations. We derived earlier that for an auto-
regression, ap(L)Xt = εt, its spectral density is SX,p(ω) = σ2

ε /2π
‖ap(eiω)‖2 . As p grows large, perhaps SX,p(ω)

provide a better and better approximation of the population spectrum, SX(ω). This is turns out to be
true provided that p is chosen correctly as a function of the sample size T.

Theorem 1.3 (Theorem 1 in Berk (1974)). Suppose that a(L)Xt = εt, where a(z)−1 6= 0 for all |z| < 1.
Assume that

1. a(eiω) 6= 0 for −π ≤ ω ≤ π,

2. E
[
ε4

t
]
< ∞,

3. p3
T/T → 0 and pT → ∞ as T → ∞,

4.
√

pT ∑∞
j=pT+1 |aj| → 0 as T → ∞.

Then,

sup
ω
|ŜX,pT (ω)− SX(ω)| p−→ 0,

∞

∑
j=0
|âj − aj|

p−→ 0.

Condition (3) implies that you must set pT to grow at a slower rate than T1/3. If this and the other
conditions are satisfied, then the resulting approximation to the spectral density is uniformly consis-
tent. Moreover, Berk (1974) additionally shows that this approximation converges in distribution to a
normal distribution centered at the population spectrum pointwise.

Next, suppose that the time series is generated from a finite order autoregression, but p0 ≤ p̄ is
unknown. How do we select the correct lag-length? A common strategy is to use an information cri-
terion. We will begin by heuristically deriving the Akaike Information Criterion (AIC) as motivation
and then, discuss information criteria more generally.

3This is an early application of a now common idea in statistics and econometrics. Intuitively, we approximate an un-
derlying population model with a sequence of increasingly, complex parametric models. This is a common technique in
non-parametrics.
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Suppose that we are interested in constructing a one-step ahead forecast of the time series Xt using
an autoregression. Assume that Xt follows an auto-regression of order p and we wish to construct an
order p autoregression

Xt = β1Xt−1 + . . . + βpXt−p + εt

= β′Xt + εt,

where Xt = (Xt−1, . . . , Xt−p)′. Our loss function is simply squared-loss

L(β̂) =
(
XT+1 − β̂′XT

)2
,

and so, the risk function is one-step ahead mean-squared prediction error,

MSPE(β̂) = E

[(
XT+1 − β̂′XT

)2
]

.

We can re-write the one-step ahead mean-square prediction error as

MSPE(β̂) = E

[(
εT+1 − (β̂− β)′XT

)2
]

= E
[
ε2

T+1
]
−E

[
(β− β̂)′XTX′T(β− β̂)

]
.

We know that as T grows large, β̂− β ≈ N(0, Σ−1
XX

σ2
ε

T , where Σ−1
XX = E

[
XTX′T

]
. Now, simply assume

that the estimation error β̂− β is independent of XT. Intuitively, think of this as a situation where the
data used to estimate β̂ is sufficiently far in the past that it is approximately independent of the data
we are using to evaluate its predictions.4 Then, under this assumption, it follows that we can re-write
the one-step ahead mean-square prediction error as

MSPE(β̂) ≈ σ2
ε −

σ2
ε

T
E
[
Z′Z

]
,

where Z ∼ N(0, Ip) and so, Z′Z ∼ χ2
p. Therefore, we arrive ta

MSPE(β̂) ≈ (1 +
p
T
)σ2

ε .

We still cannot operationalize this expression for estimation as σ2
ε is unknown. Let’s replace it with an

estimate, σ̂2
ε = T

T−p
SSR

T , where SSR is the usual sum of squared residuals and T
T−p is the usual degrees

of freedom correction. Substituting this in, we can write,

MSPE(β̂) ≈ (1 +
p
T
)

SSR/T
1− p/T

,

log
(

MSPE(β̂)
) (1
≈ log(SSR/T) + log

(
1 + p/T
1− p/T

)
≈ log(SSR/T) + 2

p
T

,

4If this were a cross-sectional setting, we would be thinking of this prediction exercise as occurring on an “hold-out
dataset” that is independent of the “training dataset.”
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where (1) follows after a first-order Taylor approximation of log(1 + z) − log(1− z) around 1. This
final expression is the Akaike Information Criterion (AIC),

AIC(p) = log(SSRp/T) + 2
p
T

,

where SSRp is the sum-of-squared residuals produced by an AR(p). It is constructed via this heuris-
tic calculation that finds a simple expression for the one-step-ahead mean-square prediction error.
The AIC then selects the optimal lag-length p∗ by minimizing AIC(p) over a pre-specified grid p =

0, . . . , p̄.
More generally, an information criterion takes the form

IC(p) = log(SSRp/T) + pg(T),

where g(T) is some function of the sample size. Think of pg(T) as a penalty function that is increasing
in the number of lags included. We select the lag length p̂ that minimizes the information criterion
in-sample

p̂ = min
p=0,...,p̄

IC(p).

Intuitively, adding more lags will always reduce the sum of squared residuals in sample but it
may be fitting noise. This introduces a bias-variance tradeoff and the penalty pg(T) tries to capture
this tradeoff in a reduced-form manner. We just saw that the AIC sets

g(T) =
2
T

.

Another common choice is the Bayes information criteria (BIC), which sets

g(T) =
log(T)

T
.

Of course, the obvious question now is: How do we selection g(T)? If we wish to select an information
criterion that produces consistent model selection, meaning that we select the correct lag length with
probability converging to one as T → ∞, then there is a simple answer.

Theorem 1.4. Assume that g(T)→ 0 and Tg(T)→ ∞ and Xt ∼ AR(p0) with p0 ≤ p̄. Then,

P { p̂ = p0}
p−→ 1m

as T → ∞.

Proof. We provide a heuristic sketch of the proof. First, we show that P { p̂ < p0} → 0 as T → ∞. We

27



have that

P { p̂ < p0} ≤ P
{

min
p=0,...,p0−1

IC(p) < IC(p0)

}
= P

{
min

p=0,...,p0−1
log(SSRp/T) + pg(T) < log(SSRp0 /T) + p0g(T)

}
= P

{
min

p=0,...,p0−1
log(SSRp/SSRp0) + (p− p0)g(T) < 0

}
,

where SSRp/SSRp0 → pc > 1 and (p− p0)g(T) → 0. So, we conclude that this probability will also
go to zero as T → ∞. Next, we show that P { p̂ > p0} → 0 as T → ∞. By the same algebra, we arrive

P { p̂ > p0} ≤ P
{

min
p=p0+1,...,p̄

log(SSRp/SSRp0) + (p− p0)g(T) < 0
}

,

= P

{
min

p=p0+1,...,p̄
2T log(SSRp/SSRp0) + 2(p− p0)Tg(T) < 0

}
,

where 2T log(SSRp/SSRp0) ≈ χ2
p−p0

because it is the log of the likelihood ratio test statistic for the
null hypothesis that the p0 + 1, . . . , p lags have zero coefficients. Therefore, the first-term is bounded in
probability, while the second term diverges to infinity. So, we conclude that the probability of p̂ > p0

will also go to zero.

That is, any choice of g(T) that grows smaller at a slower rate that T−1 will provide consistent model
selection. This immediately implies that BIC provides consistent model selection but AIC will not.
It can be shown that AIC will tend to select models that are too large, meaning that p̂AIC > p0 with
non-zero probability in large samples.

2 HAC/HAR Inference
HAC is an acronym for "heteroskedasticity auto-correlation consistent" and HAR is an acronym for
heteroskedasticity auto-correlation robust. These describe two different approaches to constructing
standard errors in time series settings. As we saw earlier, in order to construct confidence intervals
and standard errors, we need to estimate the long-run variance of a time-series

Ω =
∞

∑
j=−∞

Γj.

It is difficult to estimate this object well in finite-samples as it depends on infinitely many auto-
covariances. Heteroskedasticity auto-correlation consistent (HAC) inference focuses on constructing
a consistent estimate of the long-run variance Ω, whereas heteroskedasticity auto-correlation robust
(HAR) inference will allow Ω̂ to be inconsistent in the hopes of delivering better finite-sample perfor-
mance. Recall that in classical inference, we wish to control the size of our hypothesis tests and then,
among all tests of the same size, we wish to select the test that maximizes power. In this setting, we
will not be able to control size exactly and so, there will be a size-power tradeoff.
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The canonical HAC estimator is the Newey-West estimator

Ω̂NW =
s

∑
j=−s

(1− |j/s|)Γ̂j,

proposed in Newey and West (1987). This only uses finitely many estimated auto-covariances and
weights them with the kernel, (1− |j/s|). This kernel is known as the triangular or bartlett kernel. It
is chosen to ensure that the resulting estimate Ω̂ is positive semi-definite. Alternative choices for the
kernel will deliver alternative estimators. That is,

Ω̂SC =
s

∑
j=−s

k(|j/s|)Γ̂j,

and we will refer to these as time domain or covariance domain estimators. For a time domain
estimator, the researcher must specify a kernel k and a cut-off rule as a function of the sample size
s(T). Alternatively, we could consider estimating Ω in the frequency domain. A frequency domain
estimator takes the form

Ω̂WP =
1
M

M

∑
j=1

K(j/M)‖dZ(ωj)‖2,

where ωj = 2π j/T, dZ(ω) =
√

1/T ∑T
t=1 Zte−iωt and

‖dZ(ωj)‖2 = dZ(ωj)dZ(ωj)
′

is the periodogram of Zt at frequency ωj. K(·) is a kernel in the frequency domain and M is a trunca-
tion parameter. For a frequency domain estimator, the researcher must specify a kernel K(·) and and
a cutoff rule as a function of the sample size M(T). How do we do chooses these objects to control
size and maximize power?

There are two key ideas that have come out of this literature on HAC/HAR inference. First,
selecting a larger truncation parameter S(T) in the time domain or equivalently, a smaller bandwidth
M(T) in the frequency domain improves the size of tests. Why is this? Intuitively, there is a bias-
variance tradeoff in estimating the long-run variance. For the time-domain estimator, including few
estimated auto-covariances leads to a lower variance estimator with high bias. Choosing too small
of a truncation parameter S(T) corresponds to choosing a low variance, high bias estimator of the
long-run variance and this will lead to standard errors that tend to be too small. But, pushing back in
the other direction, is that including many auto-covariances will lead to a higher variance estimator of
the long-run variance. This leads to the second key idea, which is that this problem of a high variance
estimator of the long-run variance can be solved by using non-standard critical values. These are
known as fixed-b critical values. We will discuss these more later on.

Finally, throughout this section, we provide heuristic derivations to focus on intuition. Many of
the ideas and results in this section are stated formally in Lazarus et al. (2018) and Lazarus, Lewis and
Stock (2018).
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2.1 Null rejection rate expansion

We’ll assume exact normality for now. We wish to compute

PH0

{
t2 > c

}
= PH0

{
(β̂− β0)2

Ω̂/σ̂4
x

> c

}
.

What’s the null hypothesis we are testing? Consider the model

yt = xtβ + ut,

and we wish to test the null hypothesis, H0 : β = β0. For simplicity, we assume that we are in the
scalar case with xt ∈ R and xt

as
= 1, ut normally distributed. In other words, we wish to test whether

the mean of yt equals some constant. The model becomes

yt = β + ut, ut ∼ stationary normal.

We estimate Ω using a frequency domain estimator with

Ω̂ =
1
M

M

∑
j=1

K(j/M)

∥∥∥∥dz(
2π j
T

)

∥∥∥∥2

,

dz(ωj) =

√
1
T

T

∑
t=1

zte−iωjt, where zt = ut.

Under the assumption of exact normality, note that

dz(ωj) ∼ complex normal(0, V),

where as T → ∞, V → 2πSz(ωj). This follows from our calculations in Section 1.4.1. So, we have that

∥∥dz(ωj)
∥∥2 ∼ χ2

2
2
· 2πSz(ωj).

Moreover, for j 6= k,
∥∥dz(ωj)

∥∥2 , ‖dz(ωk)‖2 are independent. This again follows from our calculations
in Section 1.4.1.

Note that we can re-write the rejection probability as

PH0

{
(β̂− β0)

2/Ω̂ > c
}
= PH0

{
(β̂− β0)2

Ω
> c

Ω̂
Ω

}

= E

[
PH0

{
(β̂− β0)2

Ω
> c

Ω̂
Ω
| Ω̂
}]

,

where the second equality follows from iterated expectations. Under the null hypothesis and by our
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assumption of exact normality, β̂− β0
H0∼ N(0, Ω). Therefore, we can write this as

PH0

{
(β̂− β0)

2/Ω̂ > c
}
= E

PH0


(

β̂− β0√
Ω

)2

> c
Ω̂
Ω
| Ω̂




= E

[
PH0

{
Z2 > c

Ω̂
Ω
| Ω̂
}]

, where Z ∼ N(0, 1), Z2 ∼ χ2
1.

= E

[
1− G(c

Ω̂
Ω
)

]
,

where G(·) is the cdf of a χ2
1. Now, apply a taylor expansion of G(c Ω̂

Ω ) around c. We have that

PH0

{
t2 > c

}
= E

1− G(c)− c

(
Ω̂−Ω

Ω

)
G′(c)− c2

2

(
Ω̂−Ω

Ω

)2

G′′(c)− . . .


≈ 1− G(c)− c

E
[
Ω̂−Ω

]
Ω

G′(c)− c2

2
E

( Ω̂−Ω
Ω

)2
G′′(c),

where c is chosen such that 1− G(c) = α and we ignore higher-order terms. Therefore, the size of the
test is not equal to α. Instead, it also depends on:

1. The bias of our estimator Ω̂: E
[
Ω̂−Ω

]
2. The mean square error of our estimator Ω̂: E

[
(Ω̂−Ω)2].

As a result, there is a bias-variance component to the size distortion. We now provide expressions for
the bias and mean-square error of this estimator.

First, we compute E
[
Ω̂
]
. Notice that

E
[
Ω̂
]
= E

[
1
M

M

∑
j=1

K(j/M)

∥∥∥∥dz(
2π j
T

)

∥∥∥∥2
]

=
1
M

M

∑
j=1

K(j/M)

[
2πSz(

2π j
T

)

]

=
1
M

M

∑
j=1

K(j/M)2π

[
Sz(0) + S′z(0)

2π j
T

+
1
2

(
2π j
T

)2

S
′′
z (0) + . . .

]
,

where the second equality used the fact that
∥∥dz(ωj)

∥∥2 ∼ χ2
2

2 · 2πSz(ωj) and the final equality took
a taylor expansion of the spectrum around ω = 0 (again, ignoring higher order terms). Recall that
Sz(ω) is symmetric around ω = 0. Therefore, if it is continuously differentiable, then S′z(0) = 0. This
simplifies the expression above to

E
[
Ω̂
]
=

1
M

M

∑
j=1

K(j/M)Ω +
1

2M

M

∑
j=1

2πK(j/M)

(
2π j
T

)2

S
′′
z (0).
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In general, the kernel is normalized such that 1
M ∑M

j=1 K(j/M) = 1. Therefore, we further simplify this
to

E
[
Ω̂
]
= Ω +

1
2M

M

∑
j=1

2πK(j/M)

(
2π j
T

)2

S
′′
z (0)

= Ω +
1
2

(
M
T

)2 1
M

M

∑
j=1

K(j/M)

(
j

M

)2

4π2 2πS
′′
z (0)

2πSz(0)
Ω

= Ω +

(
M
T

)2 1
M

M

∑
j=1

K(j/M)

(
j

M

)2

2π2 S
′′
z (0)

Sz(0)
Ω,

where S
′′
z (0)/Sz(0) is the normalized curvature of the spectrum at ω = 0. The more curvature in the

spectrum at ω = 0, the worse the bias of our estimator Ω̂. Moreover, we have that

1
M

M

∑
j=1

K(j/M)(j/M)2 ≈
∫ 1

0
u2K(u)du

for M large. Since we’re thinking of this as providing an asymptotic approximation to a limit experi-
ment in which T → ∞, we substitute this expression in and re-arrange to arrive at

E

[
Ω̂−Ω

Ω

]
= −

(
2π2

∫ 1

0
u2K(u)du,

)
· λ ·

(
M
T

)2

,

where

λ = −S
′′
z (0)

Sz(0)
.

Note that when λ > 0, the estimator is downward biased and when λ < 0, the estimator upward
biased.

Next, we calculate the variance of Ω̂. We have that

V
(
Ω̂
)
= V

(
1
M

M

∑
j=1

K(j/M)

∥∥∥∥dz(
2π j
T

)

∥∥∥∥2
)

=
1

M2

M

∑
j=1

K2(j/M)V

(∥∥∥∥dz(
2π j
T

)

∥∥∥∥2
)

,

where used the fact that dz(ωj) are uncorrelated across j. Now, recall that under the exact normality

assumption, we know that
∥∥∥dz(

2π j
T )
∥∥∥2
∼ 1

2 χ2
2 · 2π · Sz(

2π j
T ). Therefore, it’s immediate that

V

(∥∥∥∥dz(
2π j
T

)

∥∥∥∥2
)

= Sz(
2π j
T

)2 · 4π2.
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Substituting in, we arrive at

V
(
Ω̂
)
=

1
M2

M

∑
j=1

K2(j/M) · 4π2 · Sz(
2π j
T

)2.

As before, we know taylor expand Sz(ω) around ω = 0. We drop the 1st and 2nd order terms as we
they will be squared and therefore, higher order. So, we end with

V
(
Ω̂
)
=

1
M2

M

∑
j=1

K2(j/M) · (2πSz(0))
2

=
1

M2

M

∑
j=1

K2(j/M) ·Ω2

=
1
M

(∫ 1

0
K2(u)du

)
Ω2.

Then, we use our expression for the bias and the variance to rewrite the normalized MSE as

E

( Ω̂−Ω
Ω

)2
 =

1
Ω2 V

(
Ω̂
)
+

1
Ω2 Bias(Ω̂)2

=
1
M

(∫ 1

0
K2(u)du

)
,

where we ignored the bias squared term because it is multiplied by (M/T)4. For large T, this will be
higher order.

Now, we put these results to together. Recall that

PH0

{
t2 > c

}
= α− cE

[
Ω̂−Ω

Ω

]
G′(c)− c2

2
E

( Ω̂−Ω
Ω

)2
G′′(c).

Plugging in, we therefore have that the rejection probability under the null is

PH0

{
t2 > c

}
− α = c

{
2π

(∫ 1

0
u2K(u)du

)
· λ · (M/T)2

}
G′(c)− c2

2

{
1
M

∫ 1

0
K2(u)du

}
G′′(c).

This is an expression for the size distortion. Notice that the curvature of the spectral density only
enters into the bias term and the variance term does not depend on the underlying process zt. The
portion of the size distortion that is due to the variance of our estimator only depends on the choice
of kernel K(·), the bandwidth M and the cdf of a χ2

1 random variable. Therefore, we can hopefully
eliminate this term from the size distortion by simply using a different critical value.

2.2 Adjusted critical values

Based on our reasoning above, we consider using adjusted critical values. Let cm be the adjusted
critical value. From our calculations earlier, we have that the null rejection probability at this adjusted
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critical value is approximately

PH0

{
t2 > cm

}
= 1− G(cm)− cmE

[
Ω̂−Ω

Ω

]
G′(cm)−

1
2

c2
mE

( Ω̂−Ω
Ω

)2
G′′(cm).

Can we set cm such that we will eliminate the last term? To do so, we expand the null rejection
probability, which is a function of cm, around the original critical value c. In this calculation, we are
implicitly assuming that cm − c is small, and so we drop higher order terms that depend on it. We
have

PH0

{
t2 > cm

}
≈ 1− G(c)− (cm − c)G′(c)− cE

[
Ω̂−Ω

Ω

]
G′(c)− 1

2
c2
E

( Ω̂−Ω
Ω

)2
G′′(c).

We set cm such that (cm − c)G′(c) cancels the G′′(c) term. So, we set

cm = c +
1
2

c2
E

( Ω̂−Ω
Ω

)2
(−G′′(c)

G′(c)

)

= c +
(
− c2G′′(c)

2G′(c)

)(
1
M

∫ 1

0
K2(u)du

)
,

where we plugged in our expression for E
[(

Ω̂−Ω
Ω

)2
]

from earlier. At this choice of adjusted critical

value, we have that the null rejection probability becomes

PH0

{
t2 > cm

}
= α− cmE

[
Ω̂−Ω

Ω

]
G′(c).

These are fixed-b critical values. The size distortion at fixed-b critical values are

∆S = PH0

{
t2 > cm

}
− α

= cE

[
Ω̂−Ω

Ω

]
G′(c)

= 2π2 · λ · c ·
(∫ 1

0
u2K(u)du

)
·
(

M
T

)2

· G′(c).

The size distortion still depends on the curvature of the spectrum at ω = 0.

Remark 2.1. Throughout these calculations, we have been implicitly assuming that M → ∞ and M/T → 0.
This is why we have been ignoring higher-order terms. But rather than working asymptotically, we’ve been
making progress with the assumption of exact normality.
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2.3 Fixed-b critical values

We’ve been studying the test statistic of the form

t =
β̂− β0√

Ω̂

=
(β̂− β0)/

√
Ω(

1
M ∑M

j=1 K(j/M) ‖dz(2π j/T)‖2
)1/2

/
√

Ω
,

where recall that ‖dz(2π j/T)‖2 ∼ χ2
2/2 i.i.d. across j and (β̂− β0)/

√
Ω ∼ N(0, 1). So, this test statistic

approximately behaves like

t ∼ Z(
1
M ∑M

j=1 K(j/M)ξ2
j

)1/2 ,

where Z ∼ N(0, 1) and ξ2
j ∼ χ2

2/2 i.i.d. across j. This is known as the fixed-b asymptotic distribution
of the t-statistic. Note that we are treating M as fixed here. Jansson (2004) and Sun, Phillips and Jin
(2008) provide the formal derivation of this asymptotic distribution – the key is to be careful such that
M→ ∞ and M/T → 0 at the correct rates.

Remark 2.2. Consider the special case in which K(u) = 1. Then, the denominator becomes

1
M

M

∑
j=1

ξ2
j ∼ χ2

2M/2M.

Therefore,

t ∼ z√
χ2

2M/2M
∼ t2M.

This special case corresponds to using the equal-weighted periodogram to estimate Ω̂.

2.4 Size-power tradeoff

Recall 1. Recall that
Pδ

{
(Z + δ)2 ≤ x

}
= Gδ(x)

is a non-central χ2
1 with non-centrality parameter δ2.

The power of the test is

Pδ2

{
t2 > c

}
.

That is, it is the probability of correctly rejecting the null hypothesis. We want to consider H0 : β = β0
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and Ha : β 6= β0. Suppose that Ω is known for now. Then,

P
{
(β̂− β0)

2/Ω > c
}
= P

{
((β̂− β1) + (β1 − β0))2

Ω
> c

}

= P


(

β̂− β1√
Ω

+
β1 − β0√

Ω

)2

> c


= P

{
(Z + δ)2 > c

}
,

where δ = (β1 − β0)/
√

Ω. δ is the departure from the null in standardized units. We can plot this
rejection probability as a function of δ and this will deliver the power function of the test.

Now, fix some δ2. We begin with a power expansion, which is analogous to the size expansion
that we compute earlier. First, we have that

Pδ2

{
t2 > c

}
= Pδ2


(
(β̂− β1) + (β1 − β0)√

Ω̂

)2

> c


= Pδ2

{
(z + δ)2 > c

Ω̂
Ω

}

= E

[
1− Gδ2(c

Ω̂
Ω
)

]
,

where we followed the same steps as the size expansion so far. We now take a taylor expansion around
Ω̂ = Ω. We have

Pδ2

{
t2 > c

}
= 1− Gδ2(c)− cE

[
Ω̂−Ω

Ω

]
G′δ2(c)−

1
2

c2
E

( Ω̂−Ω
Ω

)2
G′′δ2(c),

where we have that 1− Gδ2(c) is the power of the test if Ω we known – it is the power of the oracle
test. The additional terms illustrate that you lose power due to estimation of Ω with Ω̂.

Now, what is the power of the test if we instead used fixed-b critical values? We’ll consider

Pδ2

{
t2 > cm

}
and taylor expand it around c. Note that cm → c at rate 1/M. Moreover, the terms that depend on
G′(cm), G′′(cm) will converge to G′(c), G′′(c) at the same rate. We ignore higher order terms that are
multiplied by 1/M as they will converge at rate 1/M2. So, we get that

Pδ2

{
t2 > cm

}
= 1− Gδ2(c)− (cm − c)G′δ2(c)− cE

[
Ω̂−Ω

Ω

]
G′δ2(c)−

1
2

c2
E

( Ω̂−Ω
Ω

)2
G′′δ2(c).
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We focus on the term

(cm − c)G′δ2(c) +
1
2

c2
E

( Ω̂−Ω
Ω

)2
G′′δ2(c) =

(
− c2G′′0 (c)

G′0(c)

)(
1
M

∫ 1

0
K2(u)du

)
G′δ2(c)

+
1
2

c2
(

1
M

∫ 1

0
K2(u)du

)
G′′δ2(c)

=

(
1
M

∫ 1

0
K2(u)du

)(
1
2

c2G′′δ2(c)− c2 G′′0 (c)
G′0(c)

G′δ2(c)
)

.

As notation, let aδ2 = 1
2 c2G′′

δ2(c)− c2 G′′0 (c)
G′0(c)

G′
δ2(c). Note that because δ2 is known (we get to choose the

alternative under consideration), this is just a number. So, we have that the power of the test using
the fixed-b critical values becomes

Pδ2

{
t2 > cm

}
= (1− Gδ2(c))− cG′δ2(c) · 2π ·

(∫ 1

0
u2K(u)du

)
· λ ·

(
M
T

)2

− aδ2

(∫ 1

0
K(u)2du

)
,

where 1− Gδ2(c) is the oracle power of the test at δ2, the second term is a distortion introduced from
estimating Ω̂ and the third term is a distortion that only depends on the chosen M, K(·) and the critical
value.

So, at the fixed-b critical values, we need to trade off between the power loss and the size distor-
tion that we saw earlier. The optimal testing approach will select the test with the higher power when
selecting among tests of the same size. Suppose that we have two estimators of Ω̂ that use the same
kernel but different bandwidths M. They will have different size distortions because of the different
choices of M. To make an apples-to-apples comparison, we need to force them to have the same size.
To do so, we introduce an additional adjustment or a “size-adjusted critical value.”

Let cM,T be our adjustment to the fixed-b critical values. We have that

PH0

{
t2 > cM,T

}
= α− (cM,T − c)G′0(c)− cE

[
Ω̂−Ω

Ω

]
G′0(c).

We choose cM,T such that the last two terms are zero. We get that

cM,T = cM + cE

[
Ω̂−Ω

Ω

]
.

This is a size-adjusted critical value. However, we don’t know the finite sample bias. The power
using the adjusted critical values is

Pδ2

{
t2 > cM,T

}
= 1− Gδ2(c)− aδ2

∫ 1

0

K2(u)
M

du.
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Now, define

∆s = PH0

{
t2 > cm

}
− α,

∆p = 1− Gδ2(c)−Pδ2

{
t2 > cM,T

}
.

We have expressions for these objects. Plugging in our results from earlier, we get that

∆s = cG′0(c)
(

2π2
∫ 1

0
u2K(u)du

)(
M
T

)2

λ,

∆p = aδ2

(∫ 1

0
K2(u)du/M

)
.

Consider the objective

√
∆s∆p =

√
λ

T

(√
cG′0(c)aδ2

√
2π2

)√∫ 1

0
u2K(u)du

∫ 1

0
K2(u)du


≥ āδ2

√
λ

T

min
K(·)

√∫ 1

0
u2K(u)du

∫ 1

0
K2(u)du

 ,

Why do we choose this? This kills off the terms depending on M. The minimization is over all kernels
satisfying K(u) ≥ 0 and

∫ 1
0 K(u)du = 1. We can show that the optimal solution is the quadratic

spectral or the epanechnikov kernel with

K(u) =
3
2
(1− u2).

We still haven’t solved for the optimal bandwidth M. We can show that M = φT2/3, which is chosen
such that O(∆s) = O(∆p) i.e. the size distortion and power loss are of the same order.

3 Structural Vector Autoregressions
Structural vector autoregressions (SVARs) are one of the main tools for estimating dynamic causal
effects in time series. To fix ideas, consider the following example from monetary policy. The FOMC
meets every 6 weeks and there is a surprise component to each decision. That is, there is a departure
from the expected path of the Federal Funds rate and we think of this deviation as a random treatment.
Let εr

t be the monetary policy shock and we wish to understand its effects. In particular, we wish to
estimate the causal effect of the monetary policy shock on some outcome Y h-periods ahead:

Et [Yt+h | εr
t = 1]−Et [Yt+h | εr

t = 0] = Θy,r,h.

We refer to this as a dynamic causal effect.5 We refer to {Θy,r,h : h ≥ 0} as an impulse response
function.

More generally, this is an exciting, active area of research in econometrics. The core question is:

5Note that we are assuming that everything here is stationary and linear.
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How can we take ideas that have been developed in applied microeconometrics on causal identifi-
cation to the time series setting? We’ll begin by discussing the traditional, SVAR approach to these
questions and then take a step back and return to this fundamental question.

3.1 Structural moving average

With the assumption of stationarity and linearity, we write

Yt
n×1

= Θ(L) εt
m×1

=

(
Θ1(L)

n×1
Θ·(L)

n×(m−1)

)(
ε1t

ε·, t

)
,

where εt is some unforecastable error.6 The dynamics of Yt are expressed in terms of the shock of inter-
est, measurement error and other shocks. In general, m ≥ n as there will be more shocks/disturbances/measurement
error than observable series. The object of interest is the lag polynomial Θ1(L).

We assume that

E
[
εtε
′
t
]
= Σε = diag{σ2

ε1
, . . . , σ2

εm
}.

That is, the shocks are mutually uncorrelated within a period. We also assume that

E [εt | εt−1, εt−2, . . .] = 0.

That is, the shocks are unpredictable over time.
We now introduce some useful objects for summarizing the contribution of a shock to the behavior

of a time series. First, we define a historical decomposition, which describes the movement in the
observed time series that is attributable to a particular shock.

Definition 3.1 (Historical decomposition). The historical decomposition describes the movement in Yt

that is attributable to ε1,t. It is, Θ1(L)ε1,t.

In other words, the historical decomposition describes how the observed time series would have be-
haved had only the shock ε1,t occurred. The forecast error of Yt+h made using a forecast based on the
available information up to time t is

Yt+h −Yt+h|t, E [Yt+h | εt, εt−1, . . .] = Yt+h|t.

This error is given by

Yt+h −Yt+h|t = Θ0εt+h + Θ1εt+h−1 + . . . + Θh−1εt+1

= Θ1,0ε1,t+h + Θ1,1ε1,t+h−1 + . . . + Θ1,h−1ε1,t+1

+ Θ·,0ε·,t+h + . . . + Θ·,h−1ε·,t+1.

6We can think of this as just an application of the Wold Decomposition.
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The forecast error variance decomposition describes what fraction of the variation in the observed
time series is attributable to the shock of interest.

Definition 3.2 (Forecast error variance decomposition). The forecast error variance decomposition
(FEVD) is contribution of error ε1,t to the mean-square in a forecast of Yt+h using the information available up
to time t. This is just

FEVD1,h =

(
θ2

1,0 + . . . , θ2
1,h−1

)
σ2

ε1

V(Yt+h −Yt+h|t)
.

To understand the challenges of estimating/identifying the impulse response function, consider
the following thought experiment. Suppose that we observed the shock of interest directly. How
would we estimate the impulse response function? In this case, the problem is simple. We would just
directly regress the outcome of interest on the observed shocks

Yt = Θ1(L)ε1,t + ut, (2)

where ut = Θ·(L)ε·,t. The coefficients on the shocks would give us the impulse response function.
This approach has, in fact, been taken in the literature as discussed in Example 3.1.

Example 3.1. A branch of the literature on the macroeconomic effects of monetary policy pursues this approach.
The idea is simple. First, we construct a credible measure of the monetary policy shock, ε̂1,t. Second, we then
estimate the regression in Equation (2), plugging in our estimate of the monetary policy shock.

One common approach to measure the monetary policy shock is to examine changes in futures markets on
the Federal Funds rate around small windows of an FOMC announcement and argue that these changes identify
the monetary policy shock. For example, see Rudebusch (1998); Kuttner (2001); Cochrane and Piazessi (2002);
Bernanke and Kuttner (2005). One common criticism of this approach is that the information that is revealed
during a window around FOMC announcements is only a partial component of the monetary policy shock as
information about monetary policy is typically revealed between meetings as well.

However, in general, the shocks εt are not observed. So, the problem of estimating/identifying the
impulse response function has two parts. First, how do we construct estimates of the shocks? Second,
given our estimates of the shocks, how do we estimate the impulse response function? The SVAR
approach that we will develop next solves both of the problems jointly.

3.2 Sims (1980), Short-Run Restrictions and the Cholesky decomposition

The standard approach for both identifying the shock of interest and estimating dynamic causal ef-
fects relies on VARs and SVARs. The identifying assumptions underlying this approach are subtle
and to illustrate these ideas, we’ll focus on the analysis in Sims (1980), a seminal paper that pioneered
these methods. Again, it’s useful to keep the two fundamental questions in mind as we discuss this
approach: (1) How do we measure the shocks of interest? (2) How do we estimate the impulse re-
sponse function? We encourage you to try to think about how this approach answers both of these
questions.
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Consider a vector auto-regression (VAR)

A(L)
n×n

Yt
n×1

= ηt
n×1

,

where ηt is referred to as the residuals, innovations or Wold decomposition errors. The associated
vector moving average is

Yt
n×1

= A(L)−1

n×n
ηt

n×1

= C(L)ηt, C(L) = I + C1L + C2L2 + . . .

Our object of interest is the lag polynomial in the structural moving average Θ(L) with

Y(L) = Θ(L)
n×m

εt
m×1

, Θ(L) = Θ0 + Θ1L + . . .

We assume that

1. n = m

2. span(ηt) = span(εt)

Together, this is known as the invertibility assumption. It implies that the structural shocks εt lie in
the linear space spanned by the reduced-form innovations. This is a strong assumption. It implies that

ηt = Θ0εt, Θ−1
0 exists. (3)

Under these assumptions, we now show that there is a structural vector auto-regression representation
of the SVMA.

Proposition 3.1 (Existence of SVAR representation). Assume that Yt is an n× 1, second-order stationary,
linearly regulator process. Assume that it has the structural moving average representation

Yt︸︷︷︸
n×1

= Θ(L)︸ ︷︷ ︸
n×m

εt︸︷︷︸
m×1

,

where E [εtε
′
s] = 0 for all s 6= t and E [εtε

′
t] = diag{σ2

1 , . . . , σ2
m}. Additionally, assume that Yt is inverible

meaning that

span(ηt) = span(εt),

where ηt = Yt − Proj {Yt |Yt−1, Yt−2, . . .}. Then, Yt has a structural vector autoregression representation

A(L)Yt = Θ0εt,

where Θ(L) = A(L)−1Θ0 and A(L) is the projection coefficient of Yt onto its past values, meaning that
Proj {Yt |Yt−1, Yt−2, . . .} = A1Yt−1 + A2Yt−2 + . . . and A(L) = I − A1L− A2L2 − . . .
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Proof. Invertibility implies that n = m and

ηt = Hεt, H−1 exists.

Therefore, we can re-write the SVMA form as

Yt = Θ(L)εt = Θ(L)H−1ηt.

Recall that ηt are the Wold innovations and so, this must be equal to the Wold representation because
the Wold representation is unique. Therefore, we have that

A(L)−1 = Θ(L)H−1 =⇒ Θ(L) = A(L)−1H,

where A(L)−1 =
(

I − A1L− A2L2 − . . .
)−1

= I + B1L + B2L2 + . . . for some matrices B1, B2, . . .. We
then have that

Θ0 + Θ1L + . . . = (I + B1L + B2L + . . .)H.

We immediately see that H = Θ0. Therefore,

Θ(L) = A(L)−1Θ0

and

A(L)Yt = ηt

= Hεt = Θ0εt.

With the assumption of invertibility and the existence of the SVAR representation, the question of
identification is relatively straightforward to answer. From Equation (3), it’s immediate that

Ση = Θ0ΣεΘ′0,

Yt = C(L)ηt

= C(L) ·Θ0εt.

Therefore, we only need to identify Θ0 to identify the impulse response function. Why? C(L) =

A(L)−1 can be estimated from the reduced-form VAR. The question then becomes: How do we iden-
tify Θ0? The first equation in the previous display tells us how to do so. We just count unknowns and
equations! From Ση we have n(n+1)

2 known parameters. But, Θ0 has n2 unknown parameters and Σε

has n unknown parameters. Since the structural shocks εt are unobserved, we need to adopt a scale
normalization. There are two common choices: (1) Unit variance normalization with Σε = In or (2)
Unit effect normalization with Θ0,jj = 1 for all j. With either of these normalization’s, there are now
only n2 unknown parameters but we still only have n(n+1)

2 equations. Therefore, we are under-identified
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and need more restrictions on the system in order identify Θ0, Σε.
Sims (1980) introduce a short-run timing assumption to solve this problem of under-identification.

In particular, we adopt the unit variance normalization and assume that Θ0 is lower triangular with
Θ1,1 0 . . . 0
Θ2,1 Θ2,2 . . . 0

...
. . . 0

Θn,1 . . . Θn,n−1 Θn,n




η1,t
...

ηn,t

 =


ε1,t

...
εn,t

 .

This means that η1,t is exogenous and just a linear function of the first structural shock. This means
that we can factor

Ση = Θ0ΣεΘ′0,

using a Cholesky decomposition. We have that

Σ1/2
η = Θ0Σ1/2

ε = Θ0.

Therefore, Θ0 = Chol(Ση).
As mentioned, this is referred to as a timing assumption. Why? It restricts which series are

allowed to react within the period to particular structural shocks.

Remark 3.1. Clearly, invertibility is the key assumption required to get the SVAR approach off the ground.
At first, it appears quite strange but there’s a natural omitted variables bias interpretation to invertibility. This
intuition is developed in detail in Stock and Watson (2018).

Suppose the the observed data is generated by a VAR, A(L)Yt = ηt, the invertibility assumption is satisfied
and that the shocks εt are observed. Consider a linear, one-step ahead forecast of the observed time series Yt based
on its own lags and the observed shocks

Proj {Yt |Yt−1, Yt−2, . . . , εt−1, εt−2, . . .} = Proj {Yt |Yt−1, Yt−2, . . . , εt−1, εt−2, . . .}
(1)
= Proj {Yt | ηt−1, ηt−2, . . . , εt−1, εt−2, . . .}
(2)
= Proj {Yt | ηt−1, ηt−2, . . .}
= Proj {Yt |Yt−1, Yt−2, . . .} ,

where (1) follows because Yt follows a VAR and (2) follows by the assumption of invertibility. In other words,
if the invertibility assumption is satisfied, the shocks εt do not provide further information in a linear, one-step
ahead forecast conditional on lagged values of the observed time series!

Example 3.2. Corporate fuel economy standards There was a proposal in August 2018 to modify the path of
corporate fuel economy standards. We wish to understand how this proposal would have affected car prices and
car sales. We’ll discuss several methods to see how the ideas we have discussed so far play out.
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• Method 1: Distributed lag model Suppose that

Yt = β(L)Xt + ut,

where Yt = ∆ log(salest) and Xt = ∆ log(pricest). Under what conditions is β identified? We need the
errors ut to be strictly exogenous. That is,

E [ut |Xt, Xt−1, . . .] = 0,

where ut is a demand disturbance. Think of this as a no feedback condition.

• Method 2: Autoregressive distributed lag model We now model

α(L)ut = ũt.

Then, we can write

α(L)Yt = α(L)β(L)Xt + α(L)ut

Ỹt = β(L)X̃t + ũt.

The idea is that after this transformation, the result error ũt is now uncorrelated over time. The condition
for identification is now strict exogeneity on the transformed variables:

E
[
ũt | X̃t, X̃t−1, . . .

]
= 0.

We can re-write this further. We have that

E
[
ũt | X̃t, X̃t−1, . . .

]
= E

[
α(L)ut | X̃t, X̃t−1, . . .

]
,

=
p

∑
j=0
E
[
ut−j | X̃t, X̃t−1, . . .

]
,

where assumed α(L) was a lag-p polynomial. Therefore, a sufficient condition is that

E
[
ut−j |Xt, Xt−1, . . .

]
= 0

for all j = 0, . . . , p. This is known as lead-lag exogeneity.

• Method 3: Vector autoregression Now let Yt be a vector. We have the VAR

A(L)Yt = ηt

and the underlying SVMA

Yt = Θ(L)εt.
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We can then write reduced-form moving average from the VAR

Yt = A(L)−1ηt

= c(L)ηt

= (I + C1L + C2L2 + . . .)ηt.

If we make the invertibility assumption, then it follows that ηt = Θ0εt with εt = Θ−1
0 ηt. We can reduce

the identification condition to a contemporaneous exogeneity condition.

In our example, think of

Yt =


∆ log(GDPt)

log(Et)

∆ log(Pt)

∆ log(St)

 .

The assumption is that

∆ log(St) = bsy∆ log(GDPt) + bse log(Et) + bsp∆ log(Pt) + λ1Yt−1 + λ2Yt−2 + . . . + εs
t ,

E [εs
t |∆ log(GDPt), log(Et), ∆ log(Pt)] = 0.

That is, demand shocks only respond to previous shocks, not contemporaneous shocks. This type of as-
sumption places a cholesky structure on the SVAR system if we extend it to each series. Recall that this
meant that Θ0 is lower triangular and therefore, so is Θ−1

0 . So, we have that
b1,1 0 . . . 0
b2,1 b2,2 . . . 0

...
. . . 0

 ηt = εt.

Therefore, from the last row, we obtain that

b4,4η4,t = −b1,4η1,t − b2,4η2,t − b3,4η3,t + ε4,t

and so, we have that ε4,t is the residual from Proj(η4,t|η1,t, η2,t, η3,t).

Remark 3.2 (SVAR Assumptions). Based on this discussion, we see that there are several assumptions re-
quired in the SVAR approach to identifying dynamic causal effects. These are

1. Linear regularity

2. Second order stationarity

3. Shocks as primitives

4. Additivity/linearity of Θ(L)

5. Invertibility
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While the assumption of second order stationarity is strong, we can often make it more plausible by explicitly
modeling sources of non-stationarity (e.g. break dates). The assumption of shocks as the underlying primitives
that drive observed movements/co-movements in macroeconomic data is another key assumption and has a long
history in macroeconomics.7 The assumption that the underlying impulse response functions are linear is also
strong. But, given the small sample sizes in time series data, it is often difficult to precisely fit non-linear models.
Finally, as we discussed in Remark 3.1, invertibility is perhaps the strongest assumption yet it is necessary in
the SVAR approach. It is an open (and exciting) question about how to relax this assumption and still make
progress.

3.3 Long-run restrictions

We now explore an alternative strategy for imposing additional restrictions on an SVAR system to
solve the under-identification problem. This was developed originally in Blanchard and Quah (1989).
For simplicity, consider

Yt =

(
GDPt

Unempt

)
, εt =

(
εs

t

εd
t

)
.

Assume that Yt = Θ(L)εt. The identifying restriction is that

Θ12(1) = 0.

That is, εd
t has no long-run effect on Unempt – demand shocks do not matter in the long-run. So, we

have that

Θ(1) = Θ0A(1)−1

and this restriction is equivalent to [
Θ0A(1)−1

]
12

= 0.

There’s an easy algorithm to solve for all the objects of intest. Recall that

Ω = A(1)−1Ση(A(1)−1)′,

where ηt = Θ0εt, Ση = Θ0ΣεΘ′0. Substituting this in, we ahve that

Ω = A(1)−1Θ0ΣεΘ′0(A(1)−1)′.

With the unit variance normalization and Σε = I, this becomes

Ω = A(1)−1Θ0Θ′0(A(1)−1)′

7See Ramey (2016) for an extensive discussion of this assumption. Rambachan and Shephard (2019) argue that for certain
dynamic causal effects of interest, we may not need to assume that the primitives of interest are the causal effects of “shocks”
to make progress.

46



and the long-run restriction imposes that Ω be lower triangular. Therefore,

Chol(Ω) = A(1)−1Θ0

and so,

Θ0 = A(1)Chol(A(1)−1Ση(A(1)−1)′).

3.4 Identification by heteroskedasticity

So, we have that ηt = Θ0εt and so, Ση = Θ0ΣεΘ′0. Recall that Ση has n(n+ 1)/2 parameters since it is a
covariance matrix, Θ0 has n2 parameters and Σε has n parameters. We then have n2 + n− n = n2 total
unknown parameters, where we subtracted off n due to the unit variance or unit effect normalization.
So, as discussed earlier, we need additional restrictions to solve this problem of under-identification.

Now, suppose that there are two variance regimes of the shocks of interest. In regime 1,

Ση,1 = Θ0Σε,1Θ′0

and in regime 2,

Ση,2 = Θ0Σε,2Θ′0.

That is, the variance of the shocks changed but the impulse response coefficients did not. Now, we
have n(n + 1)/2 known parameters in Ση,1 and n(n + 1)/2 known parameters in Ση,2 and so, in total
we have n2 + n known parameters. Suppose we adopt the unit variance normalization in regime 1.
Then, we have n2 + n unknown parameters – n2 parameters in Θ0 and n parameters in Σε,2. Therefore,
we are identified! We can set this up as an instrument, where the instrument is the regime change.

3.5 Sign restrictions

Once again, assume invertibility. We have that

A(L)Yt = ηt,

Yt = Θ(L)εt,

ηt = Θ0εt.

Suppose that some theory tells us that

R = {Θh,11 ≥ 0 : h = 0, 1, 2}.

This is a sign restriction. For example, we can at least say that a monetary policy shock will raise the
FFR over the next 2 quarters. Alternatively, we could specify

R = {Θh,21 ≤ 0 : h = 0, 1, . . . , 4}.
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Maybe we can say that a monetary policy shock will lower employment over the next several quarters.
Can we use these types of restrictions to make progress. In these cases, we will only be able to set
identify the IRF. We will focus on one particular strategy for doing inference on the identified set of
impulse response functions but this is part of an active area of research in macroeconometrics and the
much broader literature on partial identification.

We have that

Yt = A(L)−1ηt

= A(L)−1Σ1/2
η Σ−1/2

η Θ0εt,

= (A(L)−1Σ1/2
η )(Σ−1/2

η Θ0)εt.

We impose the unit variance assumption and so, E [εtε
′
t] = I. Define Q = Σ1/2

η Θ0 and note that

E

[
Σ−1/2

η ηtη
′
tΣ
−1/2
η

]
= I, where Σ1/2

η = Chol(Ση).

So, we have that

E
[
QεtεtQ′

]
= E

[
QQ′

]
= I,

where we used εt = Θ−1
0 ηt. Therefore, Q is orthonormal with QQ′ = I and Θ(L) = A(L)−1Σ1/2

η Q.
How do we construct the set of impulse response functions that are consistent with R. Uhlig (2005)
proposes the following algorithm:

1. Estimate Â(L), Σ̂η .

2. Sample Ã(L), Σ̂η from posterior of A(L), Ση .

3. Sample Q̃ from prior distribution over the space of orthonormal matrices.

4. Construct
Θ̃(L) = Ã(L)−1Σ̃−1/2

η Q̃.

Keep if Θ̃(L) ∈ R. Repeat this many times.

5. Compute the mean of accepted Θ̃(L).

This approach has a general problem. Sampling over Q̃ is tricky because Q̃ is not identified in the
data. So the estimated IRF and the resulting inference will be influenced by the prior over Q.

Example 3.3. This example is discussed in Baumeister and Hamilton (2015). Consider(
Y1,t

Y2,t

)
=

(
α1 0
0 α2

)(
Y1,t−1

Y2,t−1

)
+

(
η1,t

η2,t

)
,

where α1, α2 > 0 and E [ηtη
′
t] = I. The sign restriction is

R = {θh,11 ≥ 0 for h = 0, . . . , 6 & θh,22 ≥ 0 for h = 0, . . . , 6}.
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What is the identified set? We have that

Yt =

(
(1− α1L)−1 0

0 (1− α2L)−1

)
Σ1/2

η Qεt.

Assume for simplicity that Ση = I. We can write this as

Yt =

(
(1− α1L)−1 0

0 (1− α2L)−1

)(
cos θ − sin θ

sin θ cos θ

)
εt

=

(
(1− α1L)−1 cos θ −(1− α1L)−1 sin θ

(1− α2L)−1 sin θ (1− α2L)−1 cos θ

)
εt

= Θ(L)εt.

So, we have that

Θh,11 = αh
1 cos θ, Θh,22 = αh

2 sin θ.

For Θ(L) ∈ R, we need that cos θ ≥ 0 and sin θ ≥ 0. This requires that 0 ≤ θ ≤ π/2. We have that the
identified set is given by

0 ≤ θh,21 ≤ αh
2.

We can implement Uhlig’s algorithm analytically. We draw

θ̃h,21 = αh
2 sin θ θ ∼ U[0, π].

Then,

E
[
θ̃h,21

]
= E

[
αh

2 sin θ
]

= 0.637αh
2

Median(θ̃h,21) = 0.707αh
2

P
{

θ̃h,21
}
=

2
π

sin−1(α−h
21 x)

This raises many questions. How are we computing the mean of something that is not identified! It is based on
the implicit prior. Baumeister and Hamilton (2015) make this point – the uninformative prior for Q is dogmatic
over the space of IRFs and this can produce strange behavior in the resulting estimator.

3.6 Local projections

For now, we will continue to maintain the assumption of invertibility. Assume that the observed n× 1
dimensional time series Yt is represented by the structural vector moving average

Yt
n×1

= Θ(L) εt
m×1

.
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Recall that the assumption of invertibility implies that n = m and Yt − Proj {Yt |Yt−1, . . .} = ηt =

Θ0εt, where Θ−1
0 exists. Additionally recall that εt are interpreted as structural shocks, meaning that

E [εtε
′
t] = diag

{
σ2

ε1
, . . . , σ2

εn

}
and E [εtε

′
s] = 0 for s 6= t.

Suppose we are interested in the impulse response functions associated with the first shock ε1,t.
For some h ≥ 0, using the structural vector moving average form, we can write

Yt+h = Θ(L)εt+h

= Θ0εt+h + Θ1εt+h−1 + . . . + Θh−1εt+1 + Θhεt + Θh+1εt−1 + . . .

= Θhεt + Θh+1εt−1 + . . . + u(h)
t+h,

where u(h)
t+h = Θ0εt+h + Θ1εt+h−1 + . . . only depends on future shocks. Define ε·,t = (ε2,t, . . . , εn,t) to

be the vector all shocks except for the first shock and similarly define Θh,· to be the n× (n− 1) matrix
that contains all columns of Θh except for the first column. With this notation, further rewrite Yt+h as

Yt+h = Θh,1ε1,t + Θh,·ε·,t + Θh+1εt−1 + . . . + u(h)
t+h.

Now notice that if ε1,t were observed, we could simply run estimate this regression equation directly.
However, ε1,t is not observed. So what can we do?

To build intuition, let’s consider the simple case in which η1,t = ε1,t. This corresponds to assuming
that Θ0 is upper triangular and ordering ε1,t last (“cholesky ordered first”). Under this restriction, we
can write

Yt+h
(1)
= Θh,1ε1,t + {ε·,t−1, ε·,t−2, · · · }+ u(h)

t+h,
(2)
= Θh,1η1,t + {η·,t−1, η·,t−2, · · · }+ u(h)

t+h,
(3)
= Θh,1(Y1,t − Proj {Y1,t |Yt−1, . . .}) + {Y·,t−1, Y·,t−2, · · · }+ u(h)

t+h

= Θh,1Y1,t + {Y·,t−1, Y·,t−2, · · · }+ u(h)
t+h,

where (1) folds Θh,·ε·,t into the error u(h)
t+h and introduces the notation {·} to refer to some arbitrary

linear combination of the elements in the bracket, (2) uses the assumption ε1,t = η1,t and uses invert-
ibility to rewrite the arbitrary linear combination of past shocks as a linear combination of innovations
and (3) applies the definition of the innovations to rewrite the arbitrary linear combination of inno-
vations as just lagged values of the observed time series. This is now written completely in terms of
observables! In other words, we can identify the impulse response coefficients Θh,1 by simply directly
regressing Yt+h on Y1,t at a variety of horizons, controlling for lagged values of the observed time
series. This is the local projections approach in its simplest form. Notice that it still crucially relies
on the assumption of invertibility – intuitively, if the invertibility did not hold, then controlling for
lagged values of the observed time series would not be sufficient to control for the unobserved lagged
shocks.8

8Put it another way, without the assumption of invertibility, the final regression would suffer from omitted variables bias.
This intuition will come back when we discuss LP-IV.
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The same idea works if instead we assume that

ε1,t = η1,t − Proj {η1,t | η·,t} ,

meaning that Θ0 is upper triangular and we ordered ε1,t first (“cholesky ordered last”). In this case,
we have that

Yt+h = Θh,1ε1,t + {ε·,t−1, ε·,t−2, · · · }+ u(h)
t+h,

Yt+h = Θh,1 (η1,t − Proj {η1,t | η·,t}) + {η·,t−1, η·,t−2, · · · }+ u(h)
t+h,

= Θh,1η1,t + {η·,t}+ {η·,t−1, η·,t−2, · · · }+ u(h)
t+h,

= Θh,1Y1,t + {Y·,t, Yt−1, . . .}+ u(h)
t+h.

All that changes is we now simply need to additionally control for the other contemporaneous val-
ues of the observed times Y·,t. Once again, it is important to re-iterate what exactly the assumption
of invertibility is doing here. Under invertibility, it is sufficient to linearly control for the observed
time series to identify the full impulse response function from running this regression at a variety of
horizons.

Before we begin discussing instrumental variables, we make a few remarks about local projec-
tions.

Remark 3.3. First, local projections tends to be a relatively inefficient estimator. That is, while it identifies the
impulse response function under invertibility, it tends to be quite noisy. Moreover, if the true DGP is generated
by a VAR, then the local projections estimator is “leaving information on the table” by not exploiting the VAR
structure in constructing the impulse responses.

Second, it is often claimed that local projections can be easily generalized to handle non-linearities. For
example, it may appear that we can simply additionally add non-linear functions of the lagged time series in this
regression. However, this would, in general, break the underlying identification result. Why? As we saw, the
key to this argument is invertibility but as we have stated, invertibility is fundamentally a linear concept. In
other words, it is unclear how to generalize the definition of invertibility to handle non-linearities and without
this missing piece, it is unclear what the resulting “non-linear local projection” actually delivers.

3.7 SVAR-IV

We now introduce an additional identification strategy for identifying impulse reponse functions. We
will continue to assume invertibility and assume that Yt is generated by the reduced for VAR with

A(L)Yt = ηt,

ηt = Θ0εt,

where Θ−1
0 exists. The objects of interest are the impulse responses to the first shock, ε1,t. Begin by

re-writing the expression for ηt as

ηt = Θ0,1ε1,t + Θ0,·ε·,t.
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Suppose that we observe an instrument Zt for the shock ε1,t, meaning that Zt satisfies

1. Relevance: E [Ztε1,t] = α 6= 0,

2. Contemporaneous exogeneity: E [Ztε·,t] = 0.

These are the “usual” IV conditions, except they apply to the underlying structural shocks. Notice
that with these conditions,

E [ηtZt] = Θ0,1α.

Moreover, under the unit-effect normalization, Θ0,1,1 = 1, and so

E [η1,tZt] = α.

Therefore, the impulse responses to the first shock are identified by the Wald ratio

E
[
ηj,tZt

]
E [η1,tZt]

= Θ0,j,1.

This suggests a simple strategy for identifying the impulse responses to the first shock. We simply use
Zt as an instrument for η1,t in the regression

ηj,t = Θ0,j,1η1,t + vt,

where vt is some error correlated with η1,t.
Why is this called SVAR-IV? Notice that we are still assuming that Yt is generated by a reduced-

form VAR and only using the instrument to identify the relevant elements of the matrix contempora-
neous coefficients, Θ0. To obtain the full impulse response function, we would then use the underlying
VAR as before.

3.8 LP-IV

This will generalize the local projections method to incorporate an instrumental variable. Moreover,
this will be the first method that we consider which will no longer impose invertibility. We assume
that Yt still follows a SVMA, but do not require that the SVMA be invertible. This means that

Yt+h
n×1

= Θ(L)εt+h
m×1

,

where m ≥ n. Using the SVMA form to re-write the observed time series as

Yt+h = θh,1ε1,t + {εt+h, . . . , εt+1, ε·,t, εt−1, . . .} ,
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where as before, {·} refers to an arbitrary linear combination. Imposing the unit effect normalization,
Θ0,1,1 = 1, we see that

Y1,t = Θ0,1,1ε1,t + {ε·,t, εt−1, . . .},

= ε1,t + {ε·,t, εt−1, . . .}.

Re-arranging, we can substitute in for ε1,t to write

Yt+h = θh,1Y1,t + {εt+h, . . . , εt+1, ε·,t, εt−1, . . .} .

Now, suppose that we have access to an instrument Zt that satisfies

1. Relevance: E [Ztε1,t] = α 6= 0,

2. Contemporaneous exogeneity: E [Ztε·,t] = 0

3. Lead-lag exogeneity: E [Ztεt+k] = 0 for all k = ±1,±2, . . .

From a similar argument as in SVAR-IV, we can immediately see that the Wald ratio delivers the
impulse response coefficient Θh,j,1

Θh,j,1 =
E
[
ZtYj,t+h

]
E [ZtY1,t]

.

In other words, we can estimate the h-period ahead impulse response coefficient by simply using Zt

as an instrument for Y1,t in the regression of Yj,t+h on Y1,t.
Notice that we are additionally imposing that the instrument be unconfounded with future and

lagged shocks – this is the additional lead-lag exogeneity condition. In contrast, we only had to impose
contemporaneous exogeneity in SVAR-IV. Why is this different? In LP-IV, we will use the instrument
to identify the impulse response coefficient at each horizon, whereas in SVAR-IV, we only used the
instrument to identify the contemporaneous coefficients. It is crucial to notice that we did not need
to invoke invertibility for this identification argument to work. However, we need strong conditions
on the instrument Zt – contemporaneous exogeneity states that the instrument must be uncorrelated
with all contemporaneous shocks and lead-lag exogeneity implies that it must be uncorrelated with all
future and lagged shocks. Since the εt’s are shocks, the condition that the instrument be uncorrelated
with future shocks is not particularly strong in empirical applications. However, the condition that
the instrument be uncorrelated with past shocks may bite.

To see this, let’s consider LP-IV with additional controls. That is, consider the regression

Yj,t+h = Θh,j,1Y1,t + γ′Wt−1 + u(h)
t+h,

where Wt−1 is a vector of lagged values of the observed time series. Define the residualized instrument
as

Z⊥t = Zt − Proj {Zt |Wt−1}
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and analogously define Y⊥t . With controls, the LP-IV conditions are

1. Relevance: E
[
ε1,tZ⊥t

]
6= 0

2. Contemporaneous exogeneity: E [ε·,tZt] = 0

3. Lead-lag exogeneity: E
[
εt+kZ⊥t

]
= 0 for k = ±1,±2, . . .

For sake of argument, suppose that the identification condition we were worried about is lag exogene-
ity and we introduce the controls Wt−1 to possibly address this worry. What is a sufficient condition
for Z⊥t to satisfy lag exogeneity? A simple sufficient condition is precisely invertibility. Trivially, if
Wt−1 spans the space of past shocks, then Z⊥t is orthogonal to all lagged shocks. This suggests that
there is some sort of “no free lunch” at play – if you have an instrument that you only believe satisfies
lag exogeneity after controlling for lagged values of the time series, then this identification strategy
becomes “equivalent” to assuming invertibility in the first place.

4 Empirical Processes and the Functional Central Limit Theorem
Suppose that εt ∼ WN(0, σ2

ε and Xt = ∑t
s=1 εs. We want to approximate the distribution of some

function of X1, . . . , XT. How do we do this?

Recall 2. Recall the following results:

• CLT: Let εt be a martingale difference sequence with variance σ2
ε . Then,

ξT =
1√
T

T

∑
t=1

εt
d−→ N(0, σ2

ε ).

• CMT: Let g be a continuous function. Then, if ξT
d−→ ξ, then

g(ξT)
d−→ g(ξ).

In this section, we extend the central limit theorem to random functions. In doing so, standard
brownian motion will take the place of standard normal random variables.

Definition 4.1. Denote a standard brownian motion by W(s) s ∈ [0, 1]. This satisfies

1. W(0) = 0,

2. ∀0 ≤ t1 < t2 < . . . < tK ≤ 1, W(t2)−W(t1), W(t3)−W(t2), . . . , W(tK)−W(tK−1) are independent
with W(ti)−W(ti−1) ∼ N(0, ti − ti−1).

3. Realizations of w(s) are continuous with probability one.

Example 4.1. Let Xt = ∑t
s=1 εs with εs ∼WN(0, σ2

ε ). Then, Xt is a random walk with

∆Xt = εt, X0 = 0.
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We convert this a function XbTτc, where bTτc is the floor function and τ ∈ [0, 1]. We set

ρT(τ) = XbTτc =

√
1
T

bTτc

∑
s=1

εs.

This is a random function. We’ll show that

ρT(τ)
d−→ σεW(τ),

where W(τ) is a standard brownian motion.

4.1 Empirical processes, function spaces and the FCLT

Let g(Wt, τ) ∈ Rs be a function of the random variable Wt. Define

ξT(τ) =

√
1
T

T

∑
t=1

(g(Wt, τ)−E [g(Wt, τ)]) .

This is an empirical process. Note that for fixed τ, we could apply a central limit theorem under our
usual regularity conditions. Now, ξT(τ) is a function of τ and we want to study its behavior as a
random function.

Example 4.2. Consider g(Wt, τ) = Wt1
{ t

T ≤ τ
}

for τ ∈ (0, 1). Then,

1√
T

T

∑
t=1

g(Wt, τ) =
1√
T

T

∑
t=1

Wt1

{
t
T
≤ τ

}
=

1√
T

τT

∑
t=1

Wt.

Example 4.3 (GMM). Consider g(Wt, τ) = h(Yt, τ)⊗ Zt. As an example, h(Yt, τ)⊗ Zt = (Yt − τXt)Zt.
Then,

ξT(τ) =
1√
T

T

∑
t=1

(h(Yt, τ)⊗ Zt −E [h(Yt, τ)⊗ Zt]) .

Example 4.4. Let g(Wt, τ) = Wt1 {t ≤ bτTc}, where E [Wt] = 0. Then,

ξT(τ) =

√
1
T

T

∑
t=1

(Wt1 {t ≤ bτTc} −E [Wt1 {t ≤ bτTc}])

=

√
1
T

T

∑
t=1

Wt1 {t ≤ bτTc}

=

√
1
T

bτTc

∑
t=1

Wt.
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Consider 0 < τ1 < τ2 < 1. Then,(
ξT(τ1)

ξT(τ2)

)
=

(√
1/T ∑τ1T

t=1 Wt√
1/T ∑τ2T

t=1 Wt

)
N−→ (0, Ω),

where

Ω = σ2
ε

(
τ1 min(τ1, τ2)

min(τ1, τ2) τ2

)
.

Let C[0, 1] denote the space of continuous functions on [0, 1]. Our metric on C[0, 1] is

d( f , g) = sup
τ∈[0,1]

| f (τ)− g(τ)|.

Therefore, we say that fT(·) converges in probability to f (·) on C[0, 1] if for all δ > 0,

P {d( fT, f ) > δ} → 0

as T → ∞. In R, the CLT stated that T−1/2 ∑ Xt
d−→ N(0, σ2) for sequence of mean-zero random

variables under some regularity conditions. We’ll see that in C[0, 1], the CLT will become ξT(·)
d−→W(·)

under some conditions. Finally, we note that the CMT will also extend to C[0, 1] – if h : C[0, 1] → R is
continuous and ξT(·)

d−→ ξ(·) on C[0, 1], then h(ξT(·))
d−→ h(ξ(·)).

Example 4.5. Consider
Yt = βd(t/T) + ut,

where 1
T ∑T

t=1 d(t/T) = 0, ut = ut−1 + εt and ε ∼WN(0, σ2
ε ). Note that this implies that ut = ∑t

s=1 εs.
Then, we have that √

1
T
(

β̂− β
)
=

1
T ∑T

t=1 d(t/T)ut/
√

T
1
T ∑T

t=1 d2(t/T)
.

Define

ξT(τ) = ubτTc/
√

T =
1√
T

bτTc

∑
s=1

εs, τ = t/T.

Then, by the definition of an integral of a step function,√
1
T
(β̂− β) =

∫ 1
0 d(τ)ξT(τ)dτ∫ 1

0 d2(τ)dτ
.

We’ll argue that ∫ 1
0 d(τ)ξT(τ)dτ∫ 1

0 d2(τ)dτ

d−→
σ2

ε

∫ 1
0 W(τ)dτ∫ 1

0 d2(τ)dτ
. (4)
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How are we going to make arguments like this? Note that ξT(τ) is not continuous – it’s a step
function. Therefore, we will introduce a new function that “connects the dots” and is continuous.
Define

ξ̃T(τ) = ξT(τ) +
g̃bτTc+1√

T
(τT − bτTc) ,

where g̃t = g(Wt, τ)−E [g(Wt, τ)] to simplify notation. We will use the “connect the dots” function
to approximate ξT(τ). We’ll first argue heuristically that this is a valid approximation. Suppose that
E

[
g̃2+δ

t

]
< ∞ for δ > 0. By Markov’s inequality,

P
{

d(ξ̃T, ξT) > η
}
≤ E

[
d(ξ̃T, ξT)

2+δ

η2+δ

]
.

Now, we have that

E

[
d(ξ̃T, ξT)

2+δ
]
= E

[(
sup

τ
|ξ̃T(τ)− ξT(τ)|

)2+δ
]

= E

[
sup

τ

g̃2+δ
bτTc+1

(
√

T)2+δ
(τT − bτTc)2+δ

]

≤ E
[

max
t
|g̃t|2+δ · 1

T
· 1

Tδ/2

]
≤ 1

T

T

∑
t=1
E

[
|g̃t|2+δ

]
· 1

Tδ/2 → 0.

So as T → ∞, we have that

ξ̃T(·)− ξT(·)
p−→ 0.

Theorem 4.1 (Functional central limit theorem). Let ξt = ξt(·) ∈ C[0, 1] be a random continuous function
with E [ξt(τ)] = 0 for all τ ∈ [0, 1]. Define the metric

d( f , g) = sup
0≤τ≤1

| f (τ)− g(τ)|.

Then,

ξt(·)
d−→ ξ∗(·) ∈ C[0, 1]

if

1. Convergence of finite-dimensional distributions (FDD): Let 0 < τ1 < . . . < τk ≤ 1. Then,
ξt(τ1)

...
ξt(τk)

 d−→


ξ∗(τ1)

...
ξ∗(τk)

 .
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2. Tightness: ξt(·) is tight, meaning that

a. For each ε > 0,

P

{
sup

|τ1−τ2|<δ

|ξt(τ1)− ξt(τ2)| > ε

}
→ 0

as δ→ 0.

b. P {|ξt(0)| > λ} → 0 as λ→ ∞.

Condition (1) is usually simple to verify. It states that at any fixed K points, the joint distribution
of ξt(·) is well behaved as T → ∞. Since it describes the convergence of a random vector, we can
apply our usual central limit theorem arguments for this condition. However, Condition (1) alone is
not enough to guarantee functional convergence. We additionally need conditions that enable us to
control how the function behaves between those points. Condition (2) does so, which we can think of
tightness as a form of stochastic continuity.

Moreover, notice that the FLCT does not tell us what the limiting finite-dimensional distribution
is. Instead, it states that if we know the limiting finite-dimensional distribution, then we can pass the
continuous limit and construct the limiting empirical process.

To illustrate how the FCLT is used as a tool for analysis in non-standard problems, we’ll now
consider a series of examples.

Example 4.6. Recall the connect the dots function from earlier:

ξ̃T(τ) =

√
1
T

bτTc

∑
s=1

εt +

√
1
T

εbτTc+1(τT + bτTc).

Assuming that E
[
ε2+δ

t

]
< ∞, recall that we showed that the "connect the dots" function is asymptotically

negligible – i.e., op(1). Therefore, we’ll apply the FCLT to derive the limiting distribution of ξ̃T(τ) by focusing

on the limiting process of
√

1
T ∑bτTc

s=1 εt.
First, consider the limiting finite-dimensional distribution of this process. Assume that τ1 < τ2 < . . . < τk.

Via a central limit theorem (e.g., Gordin’s conditions), we can show that
ξT(τ1)

...
ξT(τK)

 d−→ N(0, V),

where V is some variance-covariance matrix. We have that it’s diagonal elements will be equal to

Var

(√
1
T

bτTc

∑
s=1

εt

)
= σ2

ε

bτTc
T
→ τσ2

ε .
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Next, for τ < τ′, the off-diagonal elements will be

E

[(√
1
T

bτTc

∑
s=1

εt

)(√
1
T

bτ′Tc

∑
s=1

εt

)]
= σ2

ε

bτTc
T
→ σ2

ε τ.

Therefore, the finite-dimensional distribution converges to a multivariate normal distribution with variance-
covariance matrix

σ2
ε



τ1

τ1 τ2

τ1 τ2 τ3
...

...
...

. . .

τ1 τ2 τ3 . . . τk


We can verify that tightness holds. Therefore, this converges to a gaussian process and given the variance-
covariance matrix, it converges to a brownian motion as the variance-covariance matrix equals the covariance
kernel of a brownian motion. This means that

ξT(·)
d−→ σεW(·),

where W(·) is a standard Brownian motion.

Example 4.7. Now, consider the function of the empirical process

1
T

T

∑
t=1

ξT(t/T).

Following the "connect the dots" approximation, we approximate this function of the empirical process ξT(·)
with the connect the dots function ξ̃T(·). Since we showed that the approximation error associated with this
approximation is asymptotically negligible, we will ignore it. Therefore, we have that

1
T

T

∑
t=1

ξT(t/T) =
∫ 1

0
ξT(τ)dτ,

up to op(1) terms and we applied the definition of the integral of a step function to replace the sum with the
integral. Now, define the function h : C[0, 1] → R, where h( f ) =

∫ 1
0 f (τ)dτ. This is a continuous function,

and so we apply the continuous mapping theorem to show that

1
T

T

∑
t=1

ξT(t/T) d−→ σε

∫ 1

0
ξT(τ)dτ.

Example 4.8. Consider a random walk Xt = Xt−1 + εt, where X1 = ε1, and so Xt = ∑t
s=1 εs. Notice that if
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we just consider the usual sample average

1
T

T

∑
t=1

X2
t =

1
T

T

∑
t=1

(
t

∑
s=1

εs

)2

,

this will blow up and does not converge as the variance of the random walk is growing over time. However, if
we instead divide by 1

T2 , the resulting sum is bounded in probability and we can use the FCLT to analyze its
limiting distribution. We have that

1
T2

T

∑
t=1

X2
t =

1
T

T

∑
t=1

(
Xt/
√

T
)2

=
1
T

T

∑
t=1

(
1√
T

t

∑
s=1

εs

)2

,

where 1√
T ∑t

s=1 εs = ξT(t/T) is the rolling sum process. Therefore, we have that

1
T2

T

∑
t=1

X2
t =

1
T

T

∑
t=1

ξ2
T(t/T).

Applying the connect the dots transformation and replacing the summation with an integral as before, we arrive
at

1
T2

T

∑
t=1

X2
t =

1
T

T

∑
t=1

ξ2
T(t/T)

=
∫ 1

0
ξ2

T(τ)dτ
d−→ σ2

ε

∫ 1

0
W2(τ)dτ,

where we again ignored the approximation errors from the connect the dots function and applied the FLCT and
the continuous mapping theorem.

Example 4.9. Consider yt = β0 + β1Dt + ut, where ut = ut−1 + εt, εt ∼ WN(0, σ2
ε ). Therefore, ut is a

random walk and a martingale difference sequence. Let

D̃t = Dt − D̄ = Dt −
1
T

T

∑
t=1

Dt.

Then, by Frisch-Waug-Lovell, we have that

β̂− β1 =
∑T

t=1 D̃tũt

∑T
t=1 D̃2

t
.

We model D̃t as a random step function in τ with d(τ) = D̃bτTc. Here, as usual, there will be an additional
“connect the dots” piece so that we actually approximate this with a continuous function. So, we have that

1
T

T

∑
t=1

D̃2
t =

1
T

T

∑
t=1

d(t/T)2 =
∫ 1

0
d(τ)2dτ.
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How should we deal with the numerator 1
T ∑T

t=1 D̃tũt? It is not stationary! So, we can’t just use our HAC/HAR
tricks. Instead, we’ll apply the FCLT. We have that

ut =
t

∑
s=1

εs√
1
T

ut =

√
1
T

t

∑
s=1

εt.

We’ll model this as √
1
T

ut = ξT(t/T), ξT(τ) =

√
1
T

bτTc

∑
s=1

εs.

Then, we have that √
1
T
(β̂1 − β1) =

1
T ∑T

t=1 D̃tũt/
√

T
1
T ∑T

t=1 D̃2
t

,

where

ũt/
√

T =

√
1
T
(ut − ū)

= ξT(t/T)− 1
T

T

∑
s=1

ξT(s/T)

= ξT(t/T)−
∫ 1

0
ξT(τ)dτ.

Therefore, we have that the numerator can be written as

1
T

T

∑
t=1

D̃tũt/
√

T =
1
T

T

∑
t=1

d(t/T)
(

ξT(t/T)−
∫ 1

0
ξT(τ)dτ

)
=
∫ 1

0
d(τ)ξT(τ)dτ −

(∫ 1

0
d(τ)dτ

)(∫ 1

0
ξT(τ)dτ

)
,

=
∫ 1

0
d(τ)ξT(τ)dτ.

Again, here we are skipping a step involving a "connect the dots" approximation that we argue will be asymp-
totically negligible. This is necessary to ensure that the empirical process is continuous. Using the FCLT, we
can show that

ξT(·)
d−→ σεW(·).

Then, by the continuous mapping theorem,

1
T

T

∑
t=1

d(t/T)ũt/
√

T d−→ σε

∫ 1

0
d(τ)W(τ)dτ.
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Therefore, we have that

√
1/T(β̂− β)

d−→
σε

∫ 1
0 d(τ)W(τ)dτ∫ 1

0 d(τ)2dτ
.

We can use this limiting distribution to perform hypothesis tests. In particular, it means that

√
1/T(β̂− β)

approx∼ N(0, V),

where

V
(

σε

∫ 1

0
d(τ)W(τ)dτ

)
= σ2

ε

∫
s

∫
τ

d(s)d(τ)E [W(s)W(τ)] dτds

= σ2
ε

∫
s

∫
τ

d(s)d(τ)min(s, τ)dτds,

which follows from properties of the covariance kernel of a brownian motion. Therefore,

V =
σ2

ε

∫
s

∫
τ d(s)d(τ)min(s, τ)dτds(∫ 1

0 d(s)2ds
)2 .

We end this example by making two comments. First, we used the FCLT because the error was not sta-
tionary. Second, notice that in deriving the asymptotic distribution, we divided by

√
1/T and not

√
T. Why?

Suppose that Dt = 1. Then, we’re estimating the mean of a brownian motion. Recall that V (Wt) = O(t) and
so, to stabilize this asymptotically, we need to divide by

√
T.

4.2 FCLT for dependent increments

Now suppose that ∆yt = ut, where ut is serially correlated. That is, ut = c(L)εt. We can extend our
FCLT tools to cover this case.

4.2.1 Beveridge-Nelson decomposition

We now show that we can decompose a time series into a random trend and stochastic component.

Proposition 4.1. Consider a time series {ut} with ut = c(L)εt. We can write

ut == c(1)εt + c∗(L)∆εt,

where c∗i = −∑∞
j=i+1 cj. That is, we can write yt as the sum of a random walk component and a weakly

stationary process.
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Proof. We have that

ut = C(L)εt

= c0εt + c1εt−1 + c2εt−2 + . . .

= C(1)εt − c1εt − c2εt−2 − . . . + c1εt−1 + c2εt−2 + . . .

= C(1)εt − c1∆εt − c2(εt − εt−2)− c3(εt − εt−3)− . . .

= C(1)εt − c1∆εt − c2(∆εt + ∆εt−1)− c3(∆εt + ∆εt−1 + ∆εt−2)− . . .

= C(1)εt − (c1 + c2 + c3 + . . .)∆εt − (c2 + c3 + . . .)∆εt−1 − . . .

Example 4.10. Let ξT(τ) =
1√
T ∑bτTc

t=1 Xt, where Xt = c(L)εt. Then, using the Beveridge-Nelson decomposi-
tion

ξT(τ) =
1√
T

bτTc

∑
t=1

(C(1)εt + C∗(L)∆εt) ,

= C(1)
1√
T

bτTc

∑
t=1

εT +
1√
T

bτTc

∑
t=1

C∗(L)∆εt.

The second term is a telescoping sum. This simplifies down to

ξT(τ) = C(1)
1√
T

bτTc

∑
t=1

εT +
1√
T

(
C∗(L)εbτTc − C∗(1)ε1

)
.

The second term is op(1), and so applying the FCLT, we see that

ξT(τ)
d−→ C(1)σε︸ ︷︷ ︸

Ω1/2

W(·),

where W(·) is a brownian motion as before and now Ω is the long-run variance of the process.

4.3 Break Tests

In this section, we discuss a classic application of the FCLT to time series: break tests. The idea is
that we have some observed time series and wish to test whether there is a “break” in its behavior at
some point in time. For example, suppose the observed time series consist of several macroeconomic
aggregates such as GDP, unemployment and inflation. We may wish to test whether there is a break
in the variance of these time series at some time in the 1980s to test whether there exists a “great
moderation” in the observed data. The literature on break tests is extremely well-developed.

Consider the time series regression

Yt = β′1Xt1 {t ≤ r}+ β′2Xt1 {t > r}+ ut,

where (Xt, ut) are stationary. We wish to test the null hypothesis, H0 : β1 = β2 – that is, we wish to
test whether there is a break in the coefficient on Xt at some point in the sample period. The challenge
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is that the break date r is unknown and under the null hypothesis of no break, the break date r is not
identified. We will use the empirical process toolkit we developed to deal with these challenges.

To build intuition, suppose that the break date r is known. Then, to test whether there is a break,
we would simply estimate the regression

Yt = β′1Xt1 {t ≤ r}+ β′2Xt1 {t > r}+ ut,

and construct the F-statistic to test whether β1 = β2. Let FT(r/T) denote this test statistic. Under the
usual regularity conditions, the limiting distribution of the F-statistic will be a chi-square distribution
with known degrees of freedom. Since r is unknown, we could simply repeat this test at all possible
values of r and apply a Bonferroni correction to ensure proper size. However, this approach will be
very conservative (underpowered). Instead, a natural thought would be to use the maximum F-statistic
as our test statistic of H0 : β1 = β2, r unknown. The maximum F-statistic is commonly referred to as
the sup-wald statistic and it is given by

max
r=1,...,T

FT(r/T).

While this is an intuitive choice, what is its limiting distribution? How do we select critical values for
this test statistic? It turns out that the limiting distribution of the sup-wald statistic is relatively simple
and elegant. We will now derive it.

Once again, fix r. Then, under usual regularity conditions, we know that(√
T(β̂1 − β1)√
T(β̂2 − β2)

)
d−→ N (0, Σ) .

By construction, β̂1 only depends on the first r terms and β̂2 only depends on the r + 1, . . . , T terms.
We have that

√
T(β̂1 − β1) =

(
1
T

T

∑
t=1

XtX′t1 {t ≤ r}
)−1(

1√
T

T

∑
t=1

Xtut1 {t ≤ r}
)

and define

VT(r/T) ≡ 1
T

brTc

∑
t=1

XtX′t,

ξT(r/T) =
1√
T

brTc

∑
t=1

Xtut.

Throughout this calculation, there is a "connect the dots" step that we skip since we’ve argued earlier
that the approximation error associated with this step will be asymptotically negligible. So, we have
that

√
T(β̂1 − β1) = VT(r/T)−1ξT(r/T).
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Similarly, we have that

√
T(β̂2 − β2) = (VT(1)−VT(r/T))−1(ξT(1)− ξT(r/T)).

Our estimate of the variance-covariance matrix Σ̂ is given by

Σ̂ ≈
(

VT(r/T)−1Ω̂(r/T)VT(r/T)−1 0
0 (VT(1)−VT(r/T))−1 (Ω̂(1)− Ω̂(r/T)

)
(VT(1)−VT(r/T))−1 0

)
.

Why are the off-diagonal terms approximately zero? We assumed that (Xt, ut) are stationary. If the
auto-covariances are absolutely summable, then as T → ∞, the two non-overlapping blocks will be
approximately uncorrelated. This is a handwavy argument that would need to be formalized but take
it as given. Now, consider the F-statistic that tests whether β1 = β2. This is given by

FT(r/T) =
(√

T(β̂1 − β̂2)
)′ (

Σ̂1,1 + Σ̂2,2
) (√

T(β̂1 − β̂2)
)

=
(

VT(r/T)−1ξT(r/T)− (VT(1)−VT(r/T))−1(ξT(1)− ξT(r/T))
)′
·(

VT(r/T)−1Ω̂(r/T)VT(r/T)−1 + (VT(1)−VT(r/T))−1 (Ω̂(1)− Ω̂(r/T)
)
(VT(1)−VT(r/T))−1

)−1
·(

VT(r/T)−1ξT(r/T)− (VT(1)−VT(r/T))−1(ξT(1)− ξT(r/T))
)

,

which is a true monstrosity. It turns out that this will simplify enormously. Define λ = r/T. Assume
that

ξT(·)
d−→ Ω1/2W(·),

where W(·) is a brownian motion. This requires placing some high-level regularity conditions on the
process Xtut. Next, consider the process

VT(λ) =
1
T

bλTc

∑
t=1

XtX′t

=
1
T

bλTc

∑
t=1

(
XtX′t −V

)
+ λV.

We can show that this first term converges to zero uniformly. In particular, we have that

1√
T

1√
T

bλTc

∑
t=1

(
XtX′t −V

)
,

where under some regularity conditions, 1√
T ∑bλTc

t=1 (XtX′t −V) = Op(1). Then, under these condi-

tions, 1√
T

1√
T ∑bλTc

t=1 (XtX′t −V)
p−→ 0 uniformly. It then follows that

VT(λ)− λV
p−→ 0.
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Next, we make similarly high-level assumptions to show that

Ω̂(r/T)
p−→ λΩ uniformly.

Under these conditions, we have that

FT(r/T) d−→
(

λ−1V−1ξ(λ)− (1− λ)−1V−1(ξ(1)− ξ(λ))
)′
·(

λ−1V−1ΩV−1 + (1− λ)−1V−1ΩV−1
)−1
·(

λ−1V−1ξ(λ)− (1− λ)−1V−1(ξ(1)− ξ(λ))
)

,

=
(

λ−1ξ(λ)− (1− λ)−1(ξ(1)− ξ(λ))
)′
·
(

λ−1Ω + (1− λ)−1Ω
)−1
·
(

λ−1ξ(λ)− (1− λ)−1(ξ(1)− ξ(λ))
)

=

(
1

λ(1− λ)

)−1 (
λ−1Ω1/2ξ(λ)− (1− λ)−1Ω1/2(ξ(1)− ξ(λ))

)′ (
λ−1Ω1/2ξ(λ)− (1− λ)−1Ω1/2(ξ(1)− ξ(λ))

)
=

(
1

λ(1− λ)

)−1 (
λ−1W(λ)− (1− λ)−1(W(1)−W(λ))

)′ (
λ−1W(λ)− (1− λ)−1(W(1)−W(λ))

)
=

(W(λ)− λW(1))′ (W(λ)− λW(1))
λ(1− λ)

.

Define

B(λ) = W(λ)− λW(1).

This is a brownian bridge process. We therefore showed that the F-statistic converges to the inner-
product of a Brownian bridge

FT(·)
d−→ F∗(·) = B(λ)′B(λ)

λ(1− λ)
.

The brownian bridge process is a chi-squared process, meaning that its finite-dimensional distribution
is a chi-squared distribution. With this, we now have the limiting distribution of the sup-wald statistic.
We have that

sup
r=1,...,T

FT(r/T) d−→ sup
λ∈[0,1]

F∗(λ).

We can use this to compute critical values via simulation.

4.4 Long-run trends

We now consider the problem of inference on long-run trends and projections. This is another ap-
plication of the FLCT. For example, how do we characterize properties of a time series with a unit
root?

First, assume that the time series Yt is

∆Yt = µ + ut,
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where ut is second-order stationary. This model implies that Yt has a unit root and we say it is order
of integration is one, I(1). We observe the time series from t = 1, . . . , T and we want to construct an
h-step ahead prediction of YT+h. Our goal is to construct the predictive distribution of our forecast,
ŶT+h|T.

Begin by noticing that

YT+h −YT =
T+h

∑
t=T+1

∆Yt,

= µh +
T+h

∑
t=T+1

ut.

When h is large and we want to make a forecast far into the future, it appears that our estimate of the
mean µ will matter the most in our forecast (as it is being scaled by h). In this sense, we may be able
to ignore the short-run dynamics of the innovations ut. By the Wold Decomposition, we can write
ut = C(L)εt. Therefore,

T+h

∑
t=T+1

ut =
T+h

∑
t=T+1

C(L)εt,

(1)
=

T+h

∑
t=T+1

(C(1)εt + C∗(L)∆εt) ,

(2)
= C(1)

T+h

∑
t=T+1

εt + C∗(L)εT+h − C∗(L)εt,

where (1) follows by the Beveridge-Nelson decomposition and (2) follows because the last sum tele-
scopes. So, we see that

YT+h −YT = µh + C(1)
T+h

∑
t=T+1

εt + C∗(L)εT+h − C∗(L)εt.

The first term µh is the cumulation of the trend µ. The second term C(1)∑T+h
t=T+1 εt is the cumulation

of errors εt. It’s variance is Op(
√

h), and we will apply a CLT to this term. The final term C∗(L)εT+h −
C∗(L)εt is a remainder and it is op(1). In other words, we have that

(YT+h −YT)− µh√
h

=
1√
h

T+h

∑
t=T+1

C(1)εt + op(1)

as h grows large. We will think of the sum as a function of h and apply a FLCT. To construct the
variance of this asymptotically, we will need to construct the long run variance Ω = C2(1)σ2

ε . In other
words, we only need to construct estimates of µ and Ω. We do not need to model the period-by-period
dynamics in Y to do inference on the long-run trend.
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Our estimate of the trend component µ is simply

µ̂ =
1
T

T

∑
t=1

∆Yt = µ +
1
T

T

∑
t=1

ut

and therefore our h-step ahead prediction is

ŶT+h|T = YT + µ̂h.

Substituting in, the error from this prediction is

YT+h −YT+h|T = (µ− µ̂)h +
T+h

∑
t=T+1

ut

= −hT−1
T

∑
t=1

ut +
T+h

∑
t=T+1

ut.

Assume that

h
T

= λ.

Heuristically, think of λ as being about equal to 1.5, meaning that if we observed 100 years of data,
we are making a 50 year ahead forecast. The fact that h scales with T makes precise the notion of a
“long-run forecast.” Then, we have that

YT+bTλc − ŶT+bTλc|T√
T

= − h
T

√
1
T

T

∑
t=1

ut +

√
1
T

T+bTλc

∑
t=T+1

ut

= −λ

√
1
T

T

∑
t=1

ut +

√
1
T

T+bTλc

∑
t=T+1

ut

d−→ −λΩ1/2W(1) + Ω1/2 (W(1 + λ)−W(1)) ,

where applied the FCLT at the last step. For fixed λ, we have that this forecast error is distributed as
N(0, Ω(λ2 + λ)). We can use this to construct prediction intervals.

5 Drifting Parameters and Local Asymptotic Power
Consider a simple gaussian location model

Yt = µ + ut,

where ut ∼ N(0, σ2
u) i.i.d. We want to test the null and alternative

H0 : µ = µ0 = 0,

H1 : µ 6= µ0 = 0.
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Suppose that σu is known. Then, the distribution of the t-statistic t = Ȳ
σu/
√

T
is easy to compute. Our

test is simply that we reject if the t-statistic squared is larger than some critical value, t2 > c. Under
the fixed alternative µ = µ1 6= 0, the probability of rejection is the power of the test. This is given by

Pµ1

{
t2 > c

}
= Pµ1

{(
Ȳ

σu/
√

T

)2

> c

}

= Pµ1

{(
ū + µ1

σu/
√

T

)2

> c

}

= Pµ1


(√

Tū
σu

+

√
Tµ1

σu

)2

> c


= Pµ1


(

Z +

√
Tµ1

σu

)2

> c

 = Pµ1

χ2

1,T
µ2

1
σ2

u

> c

 ,

where χ2

1,T
µ2

1
σ2

u

is a non-central chi-square distribution with non-centrality parameter δ = T µ2
1

σ2
u
.

We were able to analytically work out the power of this test under strong conditions – we relied on
ut being exactly normally distributed and i.i.d. But, this intuition will generalize because the key step
was to replace a scaled sample average with a normally distributed random variable. Under general
conditions, this step will be justified by a central limit theorem. So, the question is: In what sense does
this result generalize and provide a good approximation for the behavior of tests in a wide variety of
settings? That is, under what conditions does the following statement hold true for all possible values
of µ1

Pµ1

{(
Ȳ

σu/
√

T

)2

> c

}
−Pµ1


(

Z +

√
Tµ1

σu

)2

> c

→ 0

as T → ∞?
For this to be true, we will need to ensure that the test has a non-trivial limit distribution. This is

where we will introduce the idea of drifting sequences. In particular, notice from above that if
√

Tµ1

diverges as T → ∞, then the asymptotic approximation of our test will be that our test rejects with
probability one. Clearly, this would not be a good approximation. To fix this problem, we consider an
asymptotic approximation involving the drifting sequence

m =

√
Tµ1

σu
=⇒ µ1 = µ1,T =

σum√
T

m fixed

This is also referred to as a pitman drift. That is, in our asymptotic approximation, we are imagining
that we are testing a drifting sequence of alternatives that gets closer to the null hypothesis as T → ∞.

Remark 5.1. What’s the intuition underlying this drifting sequence of parameters? In empirical applications,
we are usually testing null hypotheses against alternatives that are “hard” to distinguish – meaning, we do
not actually have a test with power equal to one in finite samples. In order to preserve this in our asymptotic
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approximation, we need to allow the alternative to also drift. Otherwise, for any fixed alternative, we would
eventually reach a sample size that is large enough such that we would have power equal to one against it. The
drifting sequence preserves the “hardness” of the problem that we are trying to solve.

Under this drifting sequence of alternatives, we want to show that

sup
m
Pµ1,T

{(√
TȲ

σ̂u

)
> c

}
−Pm

{
(Z + m)2}→ 0

as T → ∞. Heuristically, we will need assumptions that generate (1)
√

Tū is asymptotically normally
distributed and (2) σ̂u is uniformly consistent for σu. Then, under these assumptions, researchers argue
that

Pµ1,T

{(√
TȲ

σ̂u

)
> c

}
= Pµ1,T


(√

Tū +
√

Tµ1,T

σu

)2
σ2

u
σ̂2

u
> c


= Pµ1,T


(√

Tū
σu

+ m

)2
σ2

u
σ̂2

u
> c

→ Pm
{
(Z + m)2 < c

}

because σ2
u

σ̂2
u

p−→ 1 and
√

Tū
σu

d−→ N(0, 1).

6 Weak Identification

6.1 Review of GMM

There is a moment condition

E [h(Yt, θ0)⊗ Zt] = 0,

where h(Yt, θ) is G× 1 and Zt is m× 1. θ0 is the unique value of the parameter that sets this moment
equal to zero. Think of h(Yt, θ) as the error term and Zt as an instrument.

In the data, we consider the sample moment function with

φt(θ) = h(Yt, θ)⊗ Zt,

√
1/T

T

∑
t=1

φt(θ) =
√

1/T
T

∑
t=1

h(Yt, θ)⊗ Zt.

In the just identified case, dim(θ) = dim(Zt). In the over-identified case, dim(θ) < dim(Zt). Note
that in the just-identified case, we can solve uniquely for the value θ̂ that sets the sample moment
function equal to zero provided a rank condition is satisfied.

Example 6.1 (Linear IV). Consider the linear IV model

Yt = X′tβ + ut,

where Zt is an instrument. We assume that E [ZtXt] 6= 0 and E [utZt] = 0. Exogeneity gives us a moment
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condition with h(Yt, θ) = Yt − X′tβ and so,

E
[
(Yt − X′tβ)Zt

]
= 0.

When dim(β) = dim(Zt), we can solve this exactly and arrive at our IV estimand

βIV =
E [YtZt]

E [XtZt]

and the IV estimator is just the sample analogue:

β̂IV =
Z′Y
Z′X

.

Example 6.2 (New-Keynesian Phillips Curve). Consider

πt = γFEt [πt+1] + γbπt−1 + λXt + ut.

The tricky part in estimating this is dealing with Et [πt+1]. Why? We can re-write this as

πt = γFπt+1 + γbπt−1 + λXt +
(
ut − γ f (πt+1 −Et [πt+1])

)
.

Clearly, the error is correlated with πt+1. One approach in dealing with is to try to find an instrument.

In the over-identified case, the number of equations in the sample moment function exceeds the
number of parameters and so, we can’t solve the sample moment condition exactly. So, we then define
our estimator in terms of the quadratic objective function

ST(θ) =

[√
1
T

T

∑
t=1

φt(θ)

]′
WT

[√
1
T

T

∑
t=1

φt(θ)

]
.

If WT is positive semi-definite, then we can find a minimum. Our estimator is then

θ̂GMM = arg min
θ

ST(θ).

Example 6.3 (Linear IV). We have that√
1
T

T

∑
t=1

φt(θ) =

√
1
T

T

∑
t=1

(Yt − X′tβ)Zt√
1
T
(Y− Xβ)′Z.

Let W = (Z′Z)−1. Then,

ST(θ) =
1
T
(Y− Xβ)′Z(Z′Z)−1Z′(Y− Xβ)

=
1
T
(Ŷ− X̂β)′(Ŷ− X̂β),
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where

X̂ =Z(Z′Z)−1Z′X = PZX

Ŷ = PZY.

The minimizer of this is

β̂2SLS = (X′PZX)−1(X′PZY),

and so, 2SLS is equivalent to over-identified GMM with W = (Z′Z)−1.

We’ll now consider the asymptotic properties of GMM. To do so, we’ll use techniques from ex-
tremum estimation. In particular, we will argue that ST(θ)

p−→ S∗(θ) uniformly over
√

T(θ− θ0). That
is, it converges uniformly over parameters that lie in a 1/

√
T neighborhood of θ0 – θ = θ0 + b/

√
T.

See Newey and McFadden (1994) for an in-depth treatment of the extremum estimator approach.
As notation, let

φt(θ) = h(Yt, θ)⊗ Zt

µ(θ) = E [φt(θ)]

R(θ) = ∂µ/∂θ|θ
R(θ0) = ∂µ/∂θ|θ=θ0 .

We first state a result on the consistency of the GMM estimator.

Assumption 1 (Assumptions for consistency). Assume that

i µ(θ0) = 0 uniquely at θ0 and µ(θ) is continuous in θ.

ii 1
T ∑T

t=1 φt(θ)
p−→ µ(θ) uniformly in θ. As a scalar, this means

sup
θ∈Θ
| 1
T

T

∑
t=1

φt(θ)− µ(θ)| p−→ 0.

iii WT(θ)
p−→W(θ) uniformly, where W(θ) is positive semi-definite.

Proposition 6.1 (Consistency of GMM estimator). Under the conditions of Assumption 1,

1
T

ST(θ) =

[
1
T

T

∑
t=1

φt(θ)

]′
WT

[
1
T

T

∑
t=1

φt(θ)

]
p−→ µ(θ)′W(θ)µ(θ)

and θ̂GMM p−→ θ0.

We now state an asymptotic normality result.

Assumption 2 (Assumptions for Asymptotic Normality). Assume that
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a ∂µ/∂θ|θ = R(θ) is bounded and continuous.

b
√

1
T ∑T

t=1(φt(θ)− µ(θ)) = VT(θ)
d−→ V(θ), where V(θ) is a Gaussian process and satisfies a stochastic

lipschitz condition

|V(θ)− V(θ′)| ≤ K(θ − θ′),

almost surely where K = Op(1) uniformly over Θ.

c WT(θ)
p−→W(θ) uniformly in θ.

Proposition 6.2 (Asymptotic Normality of GMM estimator). Under the conditions in Assumption 1 and
Assumption 2, the GMM estimator satisfies

√
T
(
θ̂ − θ0

) d−→ N(0, Σ(W)),

where

Σ(W) = (R′WR)−1 (R′WΩWR
)
(R′WR)−1,

R = R(θ0),

W = W(θ0).

Proof. We provide a sketch of the argument. We focus on a 1/
√

T neighbhorhood of θ0. That is, we
consider values of θ = θ0 + b/

√
T.

Consider

√
1/T

T

∑
t=1

φt(θ) =
√

1/T
T

∑
t=1

(φt(θ)− µ(θ)) +
√

Tµ(θ)

= V +
√

Tµ(θ).

Substituting in θ = θ0 + b/
√

T, we have that

√
1/T

T

∑
t=1

φt(θ) = V(θ0 +
b√
T
) +
√

Tµ(θ0 +
b√
T
),

= V(θ0 +
b√
T
) +
√

Tµ(θ0) + bµ′(θ̃),

= V(θ0 +
b√
T
) + bµ′(θ̃),

= V(θ0) +

(
V(θ0 +

b√
T
)− V(θ0)

)
+ bµ′(θ̃),

where θ̃ ∈ (θ0, θ0 + b/
√

T) and V(θ0 +
b√
T
)− V(θ0) = Op(

1√
T
) via the stochastic lipschitz condition.
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Therefore, as T grows large, we have that

√
1/T

T

∑
t=1

φt(θ)
d−→ V(θ0) + bR

for θ = θ0 +
b√
T

. Moreover, we have that W(θ)
p−→ W(θ0) = W for these values of θ as well. Putting

these together, we have that

ST(θ)
d−→ (ν(θ) + Rb)′W (ν(θ0) + Rb)′ = S∗(b).

This is a quadratic form (we used the Taylor expansion to expand away the non-linearity of θ in φ).
So, we now have that

max
b

S∗(b) =⇒ R′W(ν + Rb∗) = 0

and solving the FOC gives that

b∗ = (R′WR)−1R′Wν,

where ν(θ0) ∼ N(0, 2πSφ(θ0)(0)). So, it follows that

b̂ =
√

T(θ̂GMM − θ0)
d−→ N(0, Σ),

Then, recall that we can derive the efficient GMM estimator which sets W = Ω−1.

6.2 Feasible efficient GMM

Suppose we have that Ω̂(θ)
p−→ Ω(θ) and suppose that this convergence is uniform in θ. Then, locally,

we have that Ω̂
p−→ Ω(θ0) where Ω̂ = Ω(θ̂).

There are two approaches that we want to focus in on. The first is two-step GMM. In step 1, we
construct a preliminary estimate with WT = I and this gives ˆθ(1). In step 2, we plug-in our first step
estimate and construct Ω̂(θ̂(1)) = 2πSφ(θ̂(1)(0). Then, we use

S(2)
T (θ) =

[√
1
T

T

∑
t=1

φt(θ)

]′
Ω̂−1(θ̂(1))

[√
1
T

T

∑
t=1

φt(θ)

]
.

What does two-step GMM look like in the linear IV case? Recall that

qt(θ) = (Yt − Xtβ)Zt

qt(θ0) = utZt.
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Assume that E [XtutXsus] = 0 for t 6= s and that the errors are homoskedastic. Then, we have that

Ω = E
[
utZtutZ′t

]
= σ2

uΣZZ.

An efficient and feasible 2-step estimator of σ̂2
u will just be a constant that multiplies the objective

function. It won’t affect the minimizer and so, we can skip the first step and use ŴT = Z′Z/T. We
have that

ST(θ) =
1
T
(Y− Xβ)′Z

Z′Z
T

Z′(Y− Xβ).

Therefore, β̂2step = β̂2SLS.
The second is continuously updating GMM. We have that

SCUE
T (θ) =

[√
1
T

T

∑
t=1

φt(θ)

]′
Ω̂−1(θ)

[√
1
T

T

∑
t=1

φt(θ)

]
.

Here every θ is the same and we directly minimize this over θ in one shot. To understand what’s going
on, we again will consider the linear IV model with homoskedastic, serially uncorrelated errors. We
have that

SCUE
T (θ) =

(Y− Xβ)′Z(Z′Z)−1Z′(Y− Xβ)

σ̂2 ,

where σ̂2 = (Y−Xβ)′(Y−Xβ)
T . We’ll rewrite this as

SCUE
T (β) =

u(β)′PZu(β)

u(β)′u(β)

=
u(β)′PZu(β)

u(β)′(I − PZ + PZ)u(β)

=
u(β)′PZu(β)

u(β)′MZu(β) + u(β)′PZu(β)
,

where MZ = I − PZ, PZ = Z(Z′Z)−1Z′. So, we have that

SCUE
T (β) =

u′PZu/u′MZu
1 + u′PZu/u′MZu

.

Minimizing this is equivalent to minimizing u′PZu/u′MZu as SCUE
T is monotone transformation of this

object. Therefore, we have that

min
β

SCUE
T (β) =⇒ min

β

(Y− Xβ)′PZ(Y− Xβ)

(Y− Xβ)′MZ(Y− Xβ)/(T − k)
.

The RHS is known as the Anderson-Rubin statistic. How do we interpret this? Suppose we regress
Y− Xβ0 = γZ + vt. The AR statistic is the homoskedastic F-statistic for testing γ = 0. In other words,
continuously updating GMM is finding the value of β that minimizes the correlation between Y− Xβ
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and Zt. This generalizes the non-linear moment condition as well. It turns out that you can show that
CUE GMM is equivalent to LIML in the linear IV case.

6.3 J statistic

Suppose you compute the AR statistic and it rejects. It could reject for two reasons: (1) Your moment
condition is wrong, (2) You selected the wrong value of θ. How do we tell which has occurred?
Consider

φt(
ˆ̂θ),

where ˆ̂θ is the efficient GMM estimator. Then, look at the value of the quadratic objective at this
efficient GMM estimator [√

1
T

T

∑
t=1

φt(
ˆ̂θ)

]′
Ω̂−1( ˆ̂θ)

[√
1
T

T

∑
t=1

φt(
ˆ̂θ)

]
.

We have the following result. Under the null that E [φt(θ0)] = 0, then

ST(
ˆ̂θ) d−→ χ2

d f ,

where d f = dim(φ)− dim(θ). This tests the alternative that E [φt(θ0)] = µ(θ0) 6= 0. For fixed µ(θ),
this will reject with probability converging to 1 for a fixed alternative.

6.4 Weak Identification: Building intuition with linear IV

Consider the reduced-form linear IV model

yt = γzt + wt,

xt = πzt + vt,

where the structural equation of interest is

yt = βxt + ut.

The reduced-form parameters γ, π are related to the structural parameter β by

β =
γ

π
=
E [yz]
E [xz]

.

The linear IV estimator is simply the ratio of the OLS estimates of the reduced-form parameters

β̂IV =
γ̂

π̂
.
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To fix ideas, consider the finite-sample gaussian case in which T is fixed,(
wt

vt

)
∼ N(0, V)

and zt is fixed (i.e., we condition on the realizations of the instrument). In this case,(
γ̂

π̂

)
∼ N(

(
γ

π

)
, Σ).

Note that

γ̂− βπ̂ =
∑T

t=1 ytzt − β ∑T
t=1 xtzt

∑T
t=1 z2

t

=
∑T

t=1 utzt

∑T
t=1 z2

t
.

Therefore,

β̂IV − β =
γ̂

π̂
− π̂β

π̂

=
γ̂− π̂β

π̂

Notice that the numerator of this expression will be well-behaved. In particular,

γ̂− βπ̂ ∼ N(0,
(

1 −β
)

Σ

(
1
−β

)
).

The problem is that it is being divided by another random variable π̂. In other words, we can re-
express the difference between the IV estimator and the structural parameter as

β̂IV − β =
γ̂− π̂β

π

1
π̂/π

=
γ̂− π̂β

π

1
1 + π̂−π

π

,

where we can apply our usual CLT arguments to the first term but the second term is a random
ratio. Moreover, the denominator of the ratio depends on the magnitude of the sampling variation
in π̂ relative to the magnitude of π̂, π̂−π

π . When the sampling variation in π̂ of the same order of
magnitude as π, then this ratio should treated as random even asymptotically.

In other words, we can think of the “strong instruments” assumption as assuming that this ratio
converges in probability to one as the sample size grows large

1
1 + π̂−π

π

p−→ 1.

In this case, our usual asymptotic approximation for the distribution of the IV estimator will work
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well. In the unidentified case with π = 0, we have that

β̂IV − β =
γ̂− π̂β

π̂

=

√
1
T ∑T

t=1 utzt√
1
T ∑T

t=1 xtzt

=

√
1
T ∑T

t=1 utzt√
1
T ∑T

t=1 vtzt

∼ N(0, V1)

N(0, V2)
,

which is the ratio of correlated normal distributions. When u ⊥⊥ v, this ratio is actually Cauchy
distributed.

So far, we heuristically argued that what will matter in the finite sample normal model is the
distance of π from zero (i.e., whether the sampling variation of π̂ is of the same order of magnitude as
π). The key parameter that will govern this is π2/Σππ, which is known as the concentration parameter.
The concentration parameter can be thought as a population first-stage F-statistic for testing whether
π is different from zero. The key question is: how do we extend this intuition beyond the finite-
sample normal model? To do so, we need to think about a limiting experiment in which this intuition
is preserved. The key step in constructing such a limiting experiment will be to consider a drifting
sequence of parameter values

πT =
C√
T

.

Where does this come from? As T grows large, the sampling variation in π̂ is of the order 1√
T

. So

allowing π to drift to zero at a 1/
√

T rate formalizes the idea that π is of the same order of magnitude
as the sampling variation of π̂. Under this nesting, we have that

1
1 + π̂−πT

πT

=
1

1 +
√

T(π̂−πT)√
TπT

=
1

1 +
√

T(π̂−πT)
C

,

and then apply our asymptotic approximations.
This heuristic derivation of weak identification in the linear IV model heavily relied on the linear

structure. The linear structure enabled us to construct an explicit expression for the IV estimator and
we worked directly with this expression. In the next section, we generalize this intuition to the general,
non-linear GMM case. As we will see, we once again will introduce a drifting parameter sequence that
will capture the key features of weak identification.s
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6.5 GMM with Weak Identification

There is ample evidence that the asymptotic approximations for GMM that we derived in Section 6.1
are very poor in finite samples. Why? The key problem is that the mean vector µ(θ) = E [φt(θ)] is
not far from zero when θ 6= θ0 and this implies that the objective function is not locally quadratic. To
formalize this idea, we will now think of

√
Tµ(θ) → m(θ), meaning that we consider a sequence of

approximations that involve a drifting sequence of the mean vector. Notice that as T gets large, the
mean vector µ(θ) = m(θ)√

T
goes to zero for all values of θ. Under this sequence, we will show that

ST(θ)
S−→
∗
(θ) = [V(θ) + m(θ)]−1 W(θ) [V(θ) + m(θ)] .

Recall our notation from Section 6.1. We defined

VT(θ) =
√

1/T
T

∑
t=1

(φt(θ)−E [φt(θ)])

µ(θ) = E [φt(θ)] .

Additionally, recall our assumptions for asymptotic normality.

a) ∂µ/∂θ|θ = R(θ) is bounded and continuous.

b)
√

1
T ∑T

t=1(φt(θ) − µ(θ)) = VT(θ)
d−→ V(θ), where V(θ) is a Gaussian process and satisfies a

stochastic lipschitz condition

|V(θ)− V(θ′)| ≤ K(θ − θ′),

almost surely where K = Op(1) uniformly over Θ.

c) WT(θ)
p−→W(θ) uniformly in θ.

We modify these assumptions. In particular, we modify assumption (i) as that imposes strong identi-
fication. We’ll now assume

a’)
√

Tµ(θ) = m(θ) uniformly in θ with m(θ0) = 0 but may not be the unique root

What does this change? Under the assumption of strong identification, we now have that

√
Tµ(θ) =

√
Tµ(θ0 + b/

√
T)

=
√

T
(

µ(θ0) + R(θ̃)b/
√

T
)

= R(θ̃)b
p−→ Rb = 0 · b = 0.

This was the strong identification assumption. Under (a’), we now have

ST(θ) =
[
VT(θ) +

√
Tµ(θ)

]′
WT(θ)

[
VT(θ) +

√
Tµ(θ)

]
d−→ [V(θ) + m(θ)]W(θ) [V(θ) + m(θ)] .
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The efficient GMM estimator sets W(θ) = Ω(θ)−1. Therefore, the efficient GMM objective function
converges to

Sefficient
T (θ)

d−→ [V(θ) + m(θ)]Ω(θ) [V(θ) + m(θ)] ≡ S∗(θ),

which is a non-central χ2 process. Depending on the true value of the function m(θ), the non-centrality
parameter may be quite complex and so, we can’t get a closed form expression for θ∗ = arg minθ S∗(θ)
in general. In the case of linear IV, m(θ) is linear in θ, and so we can go further.

We now make two remarks about this result.

Remark 6.1 (The unidentified case). In the unidentified case, µ(θ) = 0 for all θ. Then, the limiting distri-
bution of the GMM objective function is

S∗(θ)V(θ)′W(θ)V(θ).

For efficient GMM, this is given by

S∗(θ)V(θ)′Ω(θ)−1V(θ),

which is a χ2
dim(φ) process.

Remark 6.2 (Anderson-Rubin confidence intervals). The Anderson-Rubin identification robust confidence
interval is an important tool in this literature. At the true θ0, the continuous updating GMM objective converges
to

SCUE
T (θ0)

d−→ S∗(θ0) = V ′(θ0)Ω−1(θ0)V(θ0) ∼ χ2
dim(φ).

We can use this to construct a confidence interval via test inversion. Under the null hypothesis that µ(θ) = 0,

SCUE
T (θ)

d−→ S∗(θ) = V ′(θ)Ω−1(θ)V(θ) ∼ χ2
dim(φ).

Therefore, an asymptotically valid test for this null hypothesis compares the value of continuous updating GMM
objective function against a critical value based upon the χ2

dim(φ) distribution. By test-inversion, we can con-
struct a confidence interval for θ0.

Notice that this confidence interval is “identification-robust” as it did not require us to assume that there
exists a unique θ0 that satisfies the moment condition.

6.5.1 Application of linear IV

We now illustrate this result in linear IV. Consider

yt = xtβ0 + ut,

xt = z′tπ + vt
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where zt is an instrument for xt. The moment is φt(θ) = zt(yt − xtβ), and so√
1
T

T

∑
t=1

φt(θ) =

√
1
T

T

∑
t=1

zt(yt − xtβ)

=

√
1
T

T

∑
t=1

zt(ut − xt(β− β0))

=

√
1
T

T

∑
t=1

ztut −
√

1
T

T

∑
t=1

ztxt(β− β0),

where we define β− β0 = θ. Now, we add and subtract E [ztxt] θ to get√
1
T

T

∑
t=1

φt(θ) =

√
1
T

T

∑
t=1

ztut −
√

1
T

T

∑
t=1

(ztxt −E [ztxt])θ −
√

TE [ztxt] θ.

Our local-to-zero assumption is that

√
TE [ztxt] θ = m(θ) =⇒

√
TE [ztxt] = C.

Next, we write √
1
T

T

∑
t=1

(ztxt −E [ztxt]) =

√
1
T

T

∑
t=1

(
zt(z′tπ + vt)−E

[
zt(z′tπ + vt)

])
=

1
T

T

∑
t=1

(
ztz′t − ΣZZ

)√
Tπ +

√
1
T

T

∑
t=1

ztvt.

By the local-to-zero assumption, notice that
√

Tπ = Σ−1
ZZC and 1

T ∑T
t=1 (ztz′t − σZZ) by a LLN. There-

fore, we conclude that √
1
T

T

∑
t=1

(ztxt −E [ztxt]) =

√
1
T

T

∑
t=1

ztvt + op(1).

Define (
ξ1T

ξ2T

)
=

(√
1/T ∑t ztut√
1/T ∑t ztvt

)

and write √
1
T

T

∑
t=1

φt(θ) = ξ1T − ξ2Tθ − Cθ + op(1).

Under usual regularity conditions,(
ξ1T

ξ2T

)
=

(√
1/T ∑t ztut√
1/T ∑t ztvt

)
d−→
(

ξ∗1
ξ∗2

)
∼ N(0, Σξ)
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and we would like to apply a FCLT to the function in order to conclude that

VT(θ) = ξ1T − ξ2Tθ
d−→ V(θ) = ξ∗1 − ξ∗2θ.

To do so, we first show that the finite dimensional distributions of VT(θ) converge. This is straightfor-
ward. Fix θ1, . . . , θk for some scalar k and consider the vector

VT(θ1)
...

VT(θk)

 =


1 −θ1
...

...
1 −θk


(

ξ1T

ξ2T

)
,

which is asymptotically normal as the vector ξT obeys a central limit theorem. Next, we need to
establish tightness. That is, for each ε > 0, we wish to show that

P

{
sup

|θ1−θ2|<δ

|VT(θ1)− VT(θ2)| > ε

}
→ 0 as δ→ 0.

This is similarly straightforward. Substituting in for VT(θ), we see that

P

{
sup

|θ1−θ2|<δ

‖VT(θ1)− VT(θ2)‖ > ε

}
= P

{
sup

|θ1−θ2|<δ

‖ − ξ2T(θ1 − θ2)‖ > ε

}

= P

{
sup

|θ1−θ2|<δ

‖ξ2T‖|θ1 − θ2| > ε

}

= P {‖ξ2T‖ > ε/δ} ≤
E
[
‖ξ2T‖2]
ε2/δ2

0−→

provided that E
[
‖ξ2T‖2] is finite. Tightness in this example because the stochastic process VT(θ) is

linear in the parameter θ. In fact, in the case where VT(θ) is a scalar (one instrument), it is just a line
with a random intercept and random slope. Therefore, we can apply an FCLT to VT(θ) and we have
that

VT(θ)
d−→ ξ∗1 − ξ∗2θ.

Applying the results we derived on weak identification for the general GMM estimator, we arrive at
the linear IV objective converges to

ST(θ)
d−→ (ξ∗1 − ξ∗2θ − Cθ)′W(θ) (ξ∗1 − ξ∗2θ − Cθ) = S∗(θ).

Therefore, θ̂
d−→ θ∗ = arg minθ S∗(θ) and we can derive this in closed form.

Suppose we additionally assume that the error is homoskedastic, meaning that Ω = ΣZZσ2
u . Then,

the two-step GMM objective function (which is just the 2SLS objective) will converge to

S
2-step
T (θ)

d−→ (ξ∗1 − ξ∗2θ − Cθ)′ Σ−1
ZZ (ξ∗1 − ξ∗2θ − Cθ) .
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In this special case of 2SLS, the limiting distribution of the 2SLS estimator is equivalent to

θ∗ = arg min (ξ∗1 − ξ∗2θ − Cθ)′ Σ−1
ZZ (ξ∗1 − ξ∗2θ − Cθ)

=
(C + ξ∗2)

′Σ−1
ZZξ∗1

(C + ξ∗2)
′Σ−1

ZZ(C + ξ∗2)

Moreover, we can rewrite this as

θ∗ =
(λ + Zv)′Zu

(λ + Zv)′(λ + Zv)
,

where

λ = Σ−1/2
ZZ C,(

Σ−1/2
ZZ ξ∗1

Σ−1/2
ZZ ξ∗2

)
=

(
Zu

Zv

)
∼ N(0, I ⊗

(
σ2

u σuv

σuv σ2
v

)
.

The denominator is a non-central χ2 distribution with non-centrality parameter λ′λ. When λ′λ is
large, the randomness in the denominator is effectively negligible and we are in the strong instruments
case. When it is small, the randomness will matter a lot and we are in the weak instruments case.
Therefore, the parameter λ governs the strength of identification in the linear IV setting and it is
referred to as the concentration parameter.

We can further re-write this expression. Since Zu, Zv are jointly normal, define the projection of
Zu onto Zv as

Zu = δZv + η, η ⊥⊥ Zv.

Substituting this in, rewrite the expression for θ∗ as

θ∗ = δ
(λ + Zv)′Zv

(λ + Zv)′(λ + Zv)
+

(λ + Zv)′η

(λ + Zv)′(λ + Zv)
.

Conditional on Zv, this is just a normal distribution with mean zero and variance equal to
σ2

η

(λ+Zv)′(λ+Zv)
.

Unconditional on Zv, this is a mixture of normal distributions

θ∗ =
∫

N

(
δ

(λ + Zv)′Zv

(λ + Zv)′(λ + Zv)
,

σ2
η

(λ + Zv)′(λ + Zv)
dFZv

)
.

Why is this useful? In the case where the instruments are fully irrelevant and π = C = λ = 0, this
expressions provides a lot of intuition. In particular, in this case, the projection coefficient δ simplifies
to just equal σuv

σ2
v
= σux

σ2
x

, which is just the omitted variables bias term of OLS. Therefore, δ equals the
probability limit of β̂OLS− β0. Moreover, this implies that the 2SLS estimator is centered at the omitted
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variables bias term with additional noise

θ∗ =
∫

N

(
δ,

σ2
η

Z′vZv
dFZv

)
.

7 Filtering
Suppose the observed time series yt is driven by some latent process. What can we learn about the
latent process?

Example 7.1. Suppose that

yt = µt + σεεt,

µt = µt−1 + σηηt.

This is a local drift problem. We may wish to estimate and learn about the latent process µt.

Example 7.2. Suppose that

πt = λ(ut − u∗t ) + βπe
t + εt,

where πt is inflation, ut is unemployment and u∗t is the NAIRU. This is a simple model of the Phillip’s curve.
Suppose that

u∗t = u∗t−1 + ηt,

meaning that we model NAIRU as a random walk. We wish to understand the dynamics of the latent process
u∗t .

Example 7.3. Suppose that

yt
n×1

= λ(L)
n×r

ft
r×1

+ et, E
[
ete′t
]
= σ2

ε I

where

A(L) ft = ηt.

The factors ft are unobserved and they drive all of the observed comovements in the data. We wish to learn about
the factors ft.

7.1 General filtering problem

Let st denote the latent state vector, yt is the vector of observables at time t and let Yt = (yt, . . . , y1).
Our goals are:

1. Estimate some parameters θ that govern the observed process,

2. Estimate the distribution st|Yt. This is known as the filtering problem.
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3. Estimate the distribution st|YT. This is known as the smoothing problem.

There are three key components of the latent variable model:

• State density: f (st|st−1, Yt−1). This is the density of the state at time t given the history of the
latent states and observed outcomes.

• Measurement density: f (yt|st, Yt−1). This is the density given the current state and past data.

• Likelihood: This is the likelihood of the observed data

f (YT; θ) =
(

ΠT
t=2 f (yt|Yt−1, θ)

)
f (y1, θ).

From these objects, we derive the following equations:

• Prediction equation: This gives the density of the current state given the past observed data

f (st|Yt−1) =
∫

f (st|st−1, Yt) f (st−1|Yt−1) dst−1.

• Likelihood equation: This gives the density of the current observable given past observed data

f (yt|Yt−1) =
∫

f (yt|st, Yt−1) f (st|Yt−1) dst.

• Updating equation: This gives the density of the current state given current and past observed
data

f (st|Yt) =
f (yt|st, Yt−1) f (st|Yt−1)

f (yt|Yt−1)
.

These three equations provide a recursive system. We begin at t = 1 and iterate forward through
time. The likelihood equation will deliver us the likelihood of the observed data and we can use this
to estimate θ via maximum likelihood. The updating equation will give us a route to solving the
filtering problem.

There are two simple cases that we will work through analytically: (1) Linear, Gaussian case,
which will deliver the Kalman filter and (2) The discrete, markov case.

7.2 The Kalman Filter

Now, assume that all distributions are normally distributed. All of the results follow from carefully
applying properties of joint normal distributions. We have that

• State equation: st = Tst−1 + Rεt,

• Measurement equation: yt = Zst + Sηt,

where the innovations εt, ηt are i.i.d. jointly normal with(
εt

ηt

)
∼ N

(
0,

(
Q 0
0 H

))
.
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Then, define
st|t−1 = E [st |Yt−1] = Tst−1|t−1,

which follows from the state and measurement equations. Moreover, notice that

V(st|Yt−1) = RQR′.

Therefore, the distribution of the current state st given the previous state st−1 and observed data is

f (st|st−1, Yt−1) = N
(
Tst−1|t−1, RQR′

)
.

The prediction equation is then given by

f (st|Yt−1) = N(st|t−1, Pt|t−1),

where

st|t−1 = Tst−1|t−1,

Pt|t−1 = E
[
(st − st|t−1)(st − st|t−1)

′ |Yt−1
]

= E
[
(T(st−1 − st−1|t−1) + Rεt)(T(st−1 − st−1|t−1) + Rεt)

′ |Yt−1
]

= TPt−1|t−1T′ + RQR′.

This gives us the prediction equation.
Now, we turn to constructing the likelihood. We have that

f (yt|Yt−1) = N
(
yt|t−1, vt

)
,

where

νt = yt − yt|t−1

= yt − Zst|t−1

vt = V (νt|Yt−1)

= V
(
Z(st − st|t−1) + Sηt

)
= ZPt|t−1Z′ + SHS′.

Continuing, we next derive the updating equation. It is

f (st|Yt) = f (st|νt, Yt−1).

The easiest way to get this is to derive the joint distribution of st, νt conditional on Yt−1. We have that(
νt

st

)
=

(
0

st|t−1

)
+

(
Z(st − st−1) + Sηt

st − st|t−1

)
.
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Therefore, (
νt

st

)
|Yt−1 ∼ N

((
0

st|t−1

)
,

(
vt ZPt|t−1

Pt|t−1Z′ Pt|t−1

))

and it follows immediately that

st|νt, Yt−1 ∼ N(st|t, Pt|t),

where

st|t = st|t−1 + Pt|t−1Z′v−1
t νt

Pt|t = Pt|t−1 − Pt|t−1Z′v−1
t Pt|t−1.

We can then use these expressions to compute all values recursively. The tricky part is defining the
initial condition. Recall that

st = Tst|t−1 + Sηt,

and so, we can then have that

s1|0 = E [s1]

= TE [s0] + SE [η0] = 0,

P1|0 = V (s1)

= TP0|0T′ + SQS′

P1 = TP1T′ + SQS′

by stationarity. Then, we can us this to directly solve for P1.

7.2.1 The Kalman smoother

Recall that the state and measurement equations are

st = Tst−1 + Rεt

yt = Zst + Sηt,

where (εt, ηt) are jointly normally distributed. The Kalman Smoother then gives that st|YT. How?
We do so via a backwards recursion. The Kalman Filter terminates with computing sT:T, PT:T. We can
then work backwards.
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Recall our notation:

st+1 = Tst + Rεt+1,

st+1|T = Tst|t,

st+1 − st+1|T = T(st − st|T) + Rεt+1.

Then, we have that (
st+1

st

)
|Yt ∼ N

((
st+1|t
st|t

)
,

(
Pt+1|t TPt|t
Pt|tT′ Pt|t

))
.

So, we have that

st = st|t + Pt|tT
′P−1

t+1|t(st+1 − st+1|t).

Now, we can show that

st|T = E [st |YT]

= E [E [st | st+1, YT] |YT]

= E [E [st | st+1, Yt] |YT]

= E

[
st|t + Pt|tT

′P−1
t+1|t(st+1 − st+1|t) |YT

]
= st|t + Pt|tT

′P−1
t+1|t(st+1|T − st+1|t).

We can also derive a recursive expression for the variance as well.

7.3 Markov-Switching Filter

If the latent states are discrete, then all of the integrals in the prediction, likelihood and update equa-
tions becomes sums. In this case, it is quite easy to compute. We’ll consider a simple case. Suppose
that

yt = µ + βst + εt,

where

st =



1 w.p. p if st−1 = 1,

0 w.p. 1− p if st−1 = 1,

1 w.p. 1− q if st−1 = 0,

0 w.p. q if st−1 = 0.

We think of st as being a regime and it is unobserved. We’ll assume that εt ∼ N(0, σ2
ε ). We then have

that
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1. State density:

P {st | st−1, Yt−1} = pst(1− p)1−st1 {st−1 = 1}+ qst(1− q)1−st1 {st−1 = 0} .

2. Measurement density:
f (yt|st, Yt−1) = N(µ + βst, σ2

ε )

3. Prediction density:

P {st |Yt−1} = pst(1− p)1−stP {st−1 = 1 |Yt−1}+ qst(1− q)1−stP {st−1 = 0|Yt−1}

4. Likelihood:

f (yt|Yt−1) = N(µ + β, σ2
ε )P {st−1 = 1 |Yt−1}+ N(µ, σ2

ε )P {st−1 = 0 |Yt−1} .

5. Updating:

P {st = 1 |Yt} =
N(µ + β, σ2

ε )P {st = 1|Yt−1}
f (yt|Yt−1

,

P {st = 0 |Yt} =
N(µ, σ2

ε )P {st = 0|Yt−1}
f (yt|Yt−1

8 Dynamic factor models
There are three ways that we can think about dynamic factor models:

1. Data compression: Dynamic factor models reduce the dimensionality of a large number of time
series, summarizing all of the comovements into a few factors.

2. Forecasting tool: By summarizing a large number of time series into a few factors, we can simply
use the factors to make forecasts.

3. Structural analysis: Dynamic factor models are often used as an input into structural vector
autoregression analyses – these are referred to as structural DFMs or factor-augmented VARs.

8.1 Dynamic factor models

Suppose there are N time series, where Xi,t is a single time series for i = 1, . . . , N. The dynamic or state
space form of the dynamic factor model is

Xi,t = λi(L) ft + ei,t,

ψ(L) ft = ηt,

whereE
[
ei,tej,t

]
= 0, ei,t may be serially correlated andE [ηte′s] = 0. We assume that ft is q× 1 and we

call ft the dynamic factors. Intuitively, the dynamic factors are a common component of the observed
time series and this common component explains all observed comovements in the data.
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Assume that λ(L) is a p-th order polynomial. Write

Xt︸︷︷︸
N×1

=


X1,t

...
XN,t

 , Λ =


λ1,0 . . . λ1,p

...
...

λN,0 . . . λN,p

 , Ft =


ft
...

ft−p

 .

Then, we can also write the dynamic factor model in the static form as

Xt = ΛFt + et,

Ψ(L)Ft = Gηt,

for some matrix G.
The key questions are:

1. How do we estimate Λ, Ft?

2. What are r? What is q? where r is the number of static factors and q is the number of dynamic
factors.

3. How do we translate this into a structural DFM?

First, let’s discuss estimation. There are two main approaches. The first approach uses the state
space set-up and estimates the factors and loadings using KF/MLE. The second approach estimates
Ft using principal components. Second, we discuss choosing r, q. The common approach is to use an
information criterion to do so. (Stock and Watson, 2016) provides an extensive review of the literature
on the estimation of dynamic factor models, which describes these different methods in detail.

8.2 Structural DFMs

Assume that all identified parameters can be estimated exactly in a DFM.

Recall 3. Assume that A(L)Yt = ηt and assume invertibility. So, ηt = Θ0εt with Θ−1
0 exists. Then, we have

that Yt = A(L)−1Θ0εt, where Θ(L) = A(L)−1Θ0. In general, invertibility is a very strong assumption. It
will fail if there are more structural shocks that observed series or there is measurement error in the series.

Now, return to the DFM. We have that

YT = ΛFt + et

Ψ(L)Ft = Gηt.

We assume invertibility with

ηt = Θ0εt

Substituting this in, we get that

Yt =
(

ΛΨ(L)−1GΘ0

)
εt + et,
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where now Θ(L) =
(
ΛΨ(L)−1GΘ0

)
. We need to now make two normalizations:

1. Unit effect normalization: As before, we normalize Θ0,jj = 1 for all j.

2. Factor normalization: We write

Yt = ΛRR′Ft + et = ΛFt + et

Therefore, we can only identify the space spanned by the factor and so, we need to introduce
another normalization. It is common to use the name factor normalization. To understand what
this is, consider an example

FFRt

∆ log(WTIt)

∆ log(GDPt)

Y4:n,t

 =


1 0 0
0 1 0
0 0 1

unrestricted


FFFR

t

FOil
t

FGDP
t

+ et

where unrestricted = Λ̂PC
4:n

ˆΛ1:3
−1

. That is, we name the factors the monetary policy factor, the oil
factor and some real business activity factor. We then impose that the loadings of these factors
on the FFR, WTI and GDP be one.

Together, these normalizations imply that 1 unit monetary policy shock raises the FFR factor by 1 unit
and a 1 unit increase in the FFR factor increases the FFR by 1 unit. With these normalizations, we are
back in the SVAR world and can use our tricks from earlier to identify Θ0.
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