
Harvard Economics Math Camp 2018: Economet-
rics, Asymptotics Review
Ashesh Rambachan1

1 These notes are pull heavily from
materials in many econometrics and
statistics textbooks (see references
below) and draw heavily upon notes
from other econometrics and statistics
courses (Max Kasy’s notes from Ec
2110 at Harvard, Gary Chamberlain’s
notes from Ec 2120, Mark Watson’s
notes from ECON 517 at Princeton,
Ramon van Handel’s notes from ORFE
309 at Princeton and the University of
Minnesota’s math camp notes from Fall
2015). I do not provide references in the
text. And so, I take ZERO credit and all
errors are my own.

August 2018

DISCLAIMERS:

1. There is absolutely no expectation for you to read these notes prior to
math camp. Maximize utility as you see fit.

2. This is intended to provide a brief refresher on some basic concepts
and preview some material that will be covered in the first year
econometrics sequence. If some of the material is unfamiliar, do not
worry.

3. These notes contain more content than we will have time to cover
during math camp. This is intentional. Hopefully these notes can be
a reference material for you throughout the year.
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The world is very complex and we often do not want to make
strict parametric assumptions in our econometric models.2 Can we 2 For instance, it’s often not realistic in

empirical applications to assumption
that the error term in a linear regression
is normally distributed.

still say something about the behavior of our estimators without
these strict assumptions? It turns out that we can in large samples.
We ask the question: How would my estimator behave in very large
samples?3 We then use the limiting behavior of our estimator in 3 As the sample size n goes to infinity.

infinitely large samples to approximate its behavior in finite samples.
Of course this approach has its advantages and disadvantages. As

the sample size gets infinitely large, the behavior of most estimators
becomes very simple. In most cases, we can apply some version
of the central limit theorem and so, our estimator behaves as if its
sampling distribution were normal in large samples. However, this
is only an approximation for the true, finite-sample distribution of the
estimator and so, this approximation can be really bad.

In this note, we will summarize the basic tools necessary for
asymptotic statistics. A large portion of econometrics revolves around
deriving these asymptotic approximations, finding out when these
approximations are poor and what to do about it.

Types of Convergence

Recall the definition of convergence for a non-stochastic sequence of
real numbers. Let {xn} be a sequence of real numbers. We say

lim
n→∞

xn = x

if for all ε > 0, there exists some N such that for all n > N, |xn − x| <
ε. We want to generalize this to the convergence of random vari-
ables. That is, under what conditions does the sequence of random
variables {Xn} "converge" to another random variable X? There are
several notions of stochastic convergence.4 4 All of these random variables are

defined on the same sample space.
Definition 0.1. The sequence of random variables {Xn} converges to the
random variable X almost surely if

P({ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)}) = 1.

We write
Xn

a.s−→ X.

Remark 0.1. What does almost sure convergence mean? For a given out-
come ω in the sample space Ω, we can ask whether

lim
n→∞

Xn(ω) = X(ω)

holds using the definition of non-stochastic convergence. If the set of out-
comes for which this holds has probability one then Xn

a.s.−→ X.
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Definition 0.2. The sequence of random variables {Xn} converges to the
random variable X in probability if for all ε > 0,

lim
n→∞

P(|Xn − X| > ε)→ 0.

We write
Xn

p−→ X.

Remark 0.2. What does convergence in probability mean? Fix an ε > 0
and compute

Pn(ε) = P(|Xn − X| > ε).

This is just a number and so, we can check whether Pn(ε) → 0 using the
definition of non-stochastic convergence. If Pn(ε) → 0 for all values ε > 0,
then Xn

p−→ X.

Definition 0.3. The sequence of random variables {Xn} converges in
mean to the random variable X if

lim
n→∞

E[|Xn − X|] = 0.

We write
Xn

m−→ X.

{Xn} converges in mean-square to X if

lim
n→∞

E[|Xn − X|2] = 0.

We write
Xn

m.s.−−→ X.

Remark 0.3. mn = E[|Xn − X|] is just a number. Xn
m−→ X if and only

if mn → 0 using the definition of non-stochastic convergence. Similarly,
msn = E[|Xn − X|2] is also just a number and we can think about mean-
square convergence in the same way.

Definition 0.4. Let {Xn} be a sequence of random variables and Fn(·) is
the cdf of Xn. Let X be a random variable with cdf F(·). {Xn} converges in
distribution, weakly converges or converges in law to X if

lim
n→∞

Fn(x) = F(x)

for all points x at which F(x) is continuous. There are many ways of writ-
ing this

Xn
d−→ X

Xn
L−→ X

Xn =⇒ X.

We’ll use Xn
d−→ X.
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Remark 0.4. Convergence in distribution describing the convergence of the
cdfs. It does not mean that the realizations of the random variables will be
close to each other. Recall that F(x) = P(X ≤ x) = P({ω ∈ Ω : X(ω) ≤
x}). As a result, Fn(x) → F(x) does not make any statement about Xn(ω)

getting close to X(ω) for any ω ∈ Ω.

Remark 0.5. Why is convergence in distribution restricted to the continuity
points of F(x)? An example may help.

Let Xn be a degenerate random variable defined by Xn = 1/n with
probability 1 and let X be a degenerate random variable defined by X = 0
with probability one. Then, Fn(x) = 1(x ≥ 1/n) and F(x) = 1(x ≥ 0)
with Fn(0) = 0 for all n while F(0) = 1.

However, as n → ∞, Xn is getting closer and closer to X in the sense
that for all x 6= 0, Fn(x) is well approximated by F(x). Alternatively, if
we did not restrict convergence in distribution to the continuity points,
we would have the strange case where a non-stochastic sequence {Xn}
converges to X under the non-stochastic definition of convergence but not
converge in distribution.

We can extend each of these definitions to random vectors. For
example, the sequence of random vectors {Xn}

a.s−→ X if each element
of Xn converges almost surely to each element of X. The extension
is analogous for convergence in probability. A sequence of random
vectors converges into distribution to a random vector if we apply the
definition above to the joint cumulative distribution function. Alter-
natively, the following theorem provides another characterization of
multivariate convergence in distribution.

Theorem 0.1. Cramer-Wold Device
Let {Zn} be a sequence of k-dimensional random vectors. Then, Zn

d−→ Z

if and only if λ′Zn
d−→ λ′Z for all λ ∈ Rk.

How do these different definitions of stochastic convergence relate
to each other? The next set of propositions lay out the relationships.5 5 Alternatively, you can skip all of these

propositions and remember the picture
below.

Figure 1: Stochastic convergence defini-
tions

Proposition 0.1. Convergence in mean-square implies convergence in mean
Suppose Xn

ms−→ X. Then, Xn
m−→ X.

Proof. This follows from Jensen’s inequality. Recall that if h(·) is a
convex function, then

E[h(Y)] ≥ h(E[Y]).

Set h(z) = z2 and Y = |Xn − X|. It follows that

0 ≤ E[|Xn − X|]2 ≤ E[|Xn − X|2].

with E[|Xn − X|2]→ 0. The result follows.



harvard economics math camp 2018: econometrics, asymptotics review 5

Proposition 0.2. Convergence in mean-square implies convergence in
probability

Suppose Xn
ms−→ X. Then, Xn

p−→ X.

Proof. This follows from Markovs’s inequality. Recall that for all
c > 0,

P(Y ≥ c) ≤ E[Y]/c.

Fix ε > 0. Set c = ε2 and Y = |Xn − X|2. We have that

0 ≤ P(|Xn − X|2 ≥ ε2) = P(|Xn − X| ≥ ε) ≤ E[|Xn − X|2]/ε2.

Taking limits of both sides, we get that

0 ≤ lim
n→0

P(|Xn − X| ≥ ε) = lim
n→∞

E[|Xn − X|2]/ε2.

and the result follows.

Proposition 0.3. Convergence in mean implies convergence probability
Suppose Xn

m−→ X. Then, Xn
p−→ X.

Proof. This follows from Markov’s inequality analogously.

Proposition 0.4. Almost sure convergence implies convergence in probabil-
ity

Suppose Xn
a.s−→ X. Then, Xn

p−→ X.

Remark 0.6. To prove convergence in probability, it is often easiest to
prove convergence in mean-square. How do you show convergence in mean-
square? Note that

E[|Xn − X|2] = Var(Xn − X) + (E[Xn]− E[X])2.

Therefore, Xn
ms−→ X if Var(Xn − X)→ 0 and E[Xn]− E[X]→ 0.

Proposition 0.5. Convergence in probability implies convergence in distri-
bution

Suppose Xn
p−→ X. Then, Xn

d−→ X.

Exercise 0.1. Let Y ∼ N(0, 1) and Yn = (−1)nY. Does Yn
d−→ Y? Does

Yn
p−→ Y?

We conclude this section with two theorems that are very useful in
deriving asymptotic distributions.

Theorem 0.2. Slutsky’s theorem

Let c be a constant. Suppose that Xn
d−→ X and Yn

p−→ Y. Then,

1. Xn + Yn
d−→ X + c.

2. XnYn
d−→ Xc.
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3. Xn/Yn
d−→ X/c provided that c 6= 0.

If c = 0, then XnYn
p−→ 0.

Theorem 0.3. Continuous mapping theorem
Let g be a continuous function. Then,

1. If Xn
d−→ X, then g(Xn)

d−→ g(X).

2. If Xn
p−→ X, then g(Xn)

p−→ X.

Proof. We provide the proof for (2) and the case where X = a ∈ R.
Let ε > 0. Since g(·) is continuous at a, there exists some δ > 0 such
that

|x− a| < δ =⇒ |g(x)− g(a)| < ε.

The contrapositive of this is

|g(x)− g(a)| ≥ ε =⇒ |x− a| ≥ δ.

Substituting in Xn, it follows that

P(|g(Xn)− g(a)| ≥ ε) ≤ P(|Xn − a| ≥ δ)→ 0.

The result follows.

Op and op Notation

Recall big-O and little-o notation for sequences of real numbers. Let
{an} and {gn} be sequences of real numbers. We have that

an = o(gn) if lim
n→∞

an

gn
= 0

and
an = O(gn) if | an

gn
| < M ∀n.

Just like we extended the definition of non-stochastic convergence
to sequences of random variable, we also extend big-O and little-o
notation.

Definition 0.5. Suppose {An} is a sequence of random variables. We write

An = op(Gn) if
An

Gn

p−→ 0

and
An = Op(Gn)

if for all ε > 0, there exists M ∈ R such that P(| An
Gn
| < M)1− ε for all n.

Remark 0.7. You’ll often see someone write Xn = X + op(1) to denote

Xn
p−→ X.
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Proposition 0.6. If Xn
d−→ X, then Xn = Op(1).

Proof. Since X is a random variable, there exists some M > 0 such
that FX is continuous at −M, M and P(|X| > M) = FX(−M) + (1−
FX(M)) < ε/2. Since Xn

d−→ X, for all n large enough

|FXn(−M)− FX(−M)| < ε/4, |FXn(M)− FX(M)| < ε/4.

And so, for all n large enough, we have that P(|Xn| > M) < ε.

Example 0.1. Let Xn ∼ N(0, n). Then,

Xn = Op(n1/2).

Why? We have that Xn/n1/2 ∼ N(0, 1) for all n. For any ε > 0, we can
choose an M such that P(|N(0, 1)| < M) > 1− ε. We also have that

Xn = Op(n).

Why? We have that Xn/n ∼ N(0, 1/n). Note that

P(|N(0, 1/n)|| > ε) = P(|N(0, 1)| > n1/2ε)→ 0.

Alternatively, note that

E[(Xn/n− 0)2] = V(Xn/n) = 1/n→ 0

and so, Xn
ms−→ 0.

The Law of Large Numbers and Central Limit Theorem

There are two basic building blocks that we use to construct all
asymptotic results. The first set of building blocks are laws of large
numbers (LLNs). These show that sample averages converge to
expectations under certain conditions. The second set of building
blocks are central limit theorems (CLTs). These show that properly
centered sample averages will converge in distribution to normal
random variables. In this section, we provide several LLNs and CLTs
that appear regularly.

Theorem 0.4. Weak law of large numbers
Let X1, . . . , Xn be a sequence of random variables with E[Xi] = µ, V(Xi) =

σ2 < ∞ for all i and Cov(Xi, Xj) = 0 for all i 6= j. Then,

X̄n =
1
n

n

∑
i=1

Xi
p−→ µ.
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Proof. By Chebyshev’s inequality,

P(|X̄n − µ| > ε2) =≤ E[(X̄n − µ)2]/ε2 = σ2/nε2 → 0.

Alternatively,

V(X̄n) = E[(X̄n − µ)2] = σ2/n→ 0, E[X̄n] = µ

and so, X̄n
ms−→ µ and the result follows.

Theorem 0.5. Chebyshev’s weak law of large numbers
Let X1, X2, . . . be a sequence of random variables with E[Xi] = µi, V(Xi) =

σ2
i and Cov(Xi, Xj) = 0 for all i 6= j. Define

X̄n =
1
n

n

∑
i=1

Xi, µ̄n =
1
n

n

∑
i=1

µi, σ̄2
n =

1
n

n

∑
i=1

σ2
i

and assume that σ̄2
n/n→ 0. Then,

X̄n − µ̄n
p−→ 0

.

Proof. First, we have that

E[X̄n − µ̄n] = 0.

Second, we have that

V(X̄n − µ̄n) = V(X̄n)

=
1
n2 ∑

i,j
Cov(Xi, Xj)

=
1
n2 ∑

i
σ2

i = σ̄2
n/n→ 0.

Therefore, X̄n − µ̄n
ms−→ 0 and so, X̄n − µ̄n

p−→ 0.

Theorem 0.6. Strong law of large numbers
If X1, X2, . . . are i.i.d with E[Xi] = µ < ∞, then

X̄n
as−→ µ.

Remark 0.8. Note that for the weak law of large numbers, we only required
the sequence of Xi’s to be uncorrelated and also required finite second mo-
ments. For the strong law of large numbers, we required the Xi’s to be i.i.d.
but did not require any assumptions about second moments.

Theorem 0.7. Central limit theorem I
Let Y1, Y2, . . . be a sequence of random variables with E[Yi] = 0, V(Yi) =

1 for all i and that each MGF, µYi (t), exists for t ∈ (−h, h) for some h > 0.
Then,

√
nȲ =

1√
n

n

∑
i=1

Yi
d−→ N(0, 1).
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Theorem 0.8. Central limit theorem II
Let X1, X2, . . . be a sequence of i.i.d random variables with mean µ and

variance σ2. Suppose each MGF, µXi (t), exists for t ∈ (−h, h) for some
h > 0. Then, √

n(X̄n − µ)
d−→ N(0, σ2).

This generalizes to random vectors. If X1, X2, . . . are i.i.d random vectors
with mean vector µ and covariance matrix Σ. Then,

√
n(X̄n − µ)

d−→ N(0, Σ).

Exercise 0.2. Let Wi ∼ χ2
10 i.i.d and define W̄n = 1

n ∑n
i=1 Wi.

1. Show that E[W̄n] = 10.

2. Show that W̄n
p−→ 10.

3. Show that 1
n ∑n

i=1(Wi − W̄)
p−→ V(Wi).

4. Does E[ 1
n ∑n

i=1(Wi − W̄)] = V(Wi)?

Exercise 0.3. Suppose Xi ∼ Np(0, Σ) for i = 1, . . . , n. Let α ∈ Rp and
define

Yn =
α′X′nXnα

1
n−1 ∑n−1

i=1 α′X′i Xiα
.

1. Show that Yn ∼ F1,n−1.

2. Show that Yn
d−→ χ2

1.

Stationarity and Martingales

So far, each of the LLNs and CLTs we discussed relied on the random
variables in the sequence to be uncorrelated or even independent. In
this sub-section, we briefly introduce a LLN-type result and CLT for
dependent data. The presentation in this sub-section closely follows
Chapter 2 of Hayashi’s Econometrics.6 6 This subsection is purely optional.

Feel free to skip it.A stochastic process is a sequence of random variables. A time
series is a stochastic process whose indices are time measurements.

Definition 0.6. A stochastic process is strictly stationary if the probabil-
ity distribution of

(Xt, Xt+1, . . . , Xt+k)

is the same as the probability distribution of

(Xτ , Xτ+1, . . . , Xτ+k)

for all t, τ, k.
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Definition 0.7. A strictly stationary stochastic process is ergodic if for any
two bounded functions f : Rk → R and g : Rk → R, the following holds:

lim
n→∞

E[ f (Xt, . . . , Xt+k)g(Xt+n, . . . , Xt+n+k)] = E[ f (Xt, . . . , Xt+k)]E[g(Xt, . . . , Xt+k)]

That is, sub-sequences separated by n time periods become independent as n
grows large.

Theorem 0.9. Ergodic law of large numbers
Suppose {Xi} is a strictly stationary, ergodic stochastic process with

E[X1] = µ. Then,

X̄n
as−→ µ.

Definition 0.8. A stochastic process {Zi} is a martingale if

E[Zi|Zi−1, . . . , Z1] = Zi−1

for all i ≥ 2. A stochastic process {Zi} with E[Zi] = 0 for all i is a martin-
gale difference sequence if

E[Zi|Zi−1, . . . , Z1] = 0

for all i ≥ 2.

Theorem 0.10. Ergodic stationary marginale difference CLT
Let {Xi} be a martingale difference sequence that is stationary and er-

godic with
E[XiX′i ] = Σ.

Then, √
nX̄n

d−→ N(0, Σ).

The Delta Method

Suppose we have some estimator Tn of a parameter θ. We know that

Tn
p−→ θ

√
n(Tn − θ)

d−→ N(0, σ2).

However, we are interested in estimating and conducting inference
on g(θ), where g is some continuously differentiable function. A
natural estimator is g(Tn) and by the continuous mapping theorem,
we know that

g(Tn)
p−→ g(θ).

Can we construct the asymptotic distribution of g(Tn)? That is,
√

n(g(Tn)− g(θ)) d−→?

The delta method provides a general technique for constructing this
asymptotic distribution.
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Theorem 0.11. The delta method
Let Yn be a sequence of random variables and let Xn =

√
n(Yn − a) for

some constant a. Let g(·) be a continuously differentiable function. Suppose
that

Xn =
√

n(Yn − a) d−→ X ∼ N(0, σ2).

Then, √
n(g(Yn)− g(a)) d−→ g′(a)N(0, σ2).

Proof. By the mean value theorem, 7 7 Recall the mean value theorem? Let
g(·) be a continuously differentiable
function and WLOG, let a < b. There
exists some c ∈ (a, b) such that g(b) =
g(a) + g′(c)(b− a).

g(Yn) = g(a) + (Yn − a)g′(Ỹn)

where Ỹn is some value between Yn and a. Since Xn
d−→ X, it follows

that Yn
p−→ a. Since g is continuously differentiable, it follows that

g′(Ỹn)
p−→ g′(a) by the continuous mapping theorem. So, it follows

that

√
n(g(Yn)− g(a)) = g′(Ỹn)

√
n(Yn − a)

= g′(Ỹn)Xn
d−→ g′(a)X

by Slutsky’s theorem.

We can prove a similar result for random vectors. In the theorem
above, replace everything with vectors. The result becomes

√
n(g(Yn)− g(a)) d−→ GN(0, Σ)

where

G =
∂g(a)

∂a′
.

Example 0.2. Suppose Xi i.i.d for i = 1, . . . , n with mean 2 and variance 1.
Then, √

n(X̄− 2) d−→ N(0, 1).

Let g(z) = z2. The delta method tells us that

√
n(X̄2 − 4) d−→ g′(2)N(0, 1) = N(0, 16).
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