
Asymptotics Review
Harvard Math Camp - Econometrics

Ashesh Rambachan

Summer 2018



Outline

Types of Convergence
Almost sure convergence
Convergence in probability
Convergence in mean and mean-square
Convergence in distribution
How do they relate to each other?
Slutsky’s Theorem and the Continuous Mapping Theorem

Op and op Notation

Law of Large Numbers

Central Limit Theorem

The Delta Method



Why Asymptotics?

Can we still say something about the behavior of our estimators
without strong, parametrics assumptions (e.g. i.i.d. normal
errors)? We can in large samples.

I How would my estimator behave in very large samples?

I Use the limiting behavior of our estimator in infinitely large
samples to approximate its behavior in finite samples.

Advantage: As the sample size gets infinitely large, the behavior of
most estimators becomes very simple.

I Use appropriate version of CLT...

Disadvantage: This is only an approximation for the true,
finite-sample distribution of the estimator and this approximation
may be quite poor.

I Two recent papers by Alwyn Young: “Channelling Fisher” and
“Consistency without Inference.”
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Stochastic Convergence

Recall the definition of convergence for a non-stochastic sequence
of real numbers.

I Let {xn} be a sequence of real numbers. We say

lim
n→∞

xn = x

if for all ε > 0, there exists some N such that for all n > N,
|xn − x | < ε.

We want to generalize this to the convergence of random variables
and there are many ways to do so.



Outline

Types of Convergence
Almost sure convergence
Convergence in probability
Convergence in mean and mean-square
Convergence in distribution
How do they relate to each other?
Slutsky’s Theorem and the Continuous Mapping Theorem

Op and op Notation

Law of Large Numbers

Central Limit Theorem

The Delta Method



Almost sure convergence

The sequence of random variables {Xn} converges to the
random variable X almost surely if

P({ω ∈ Ω : lim
n→∞

Xn(ω) = X (ω)}) = 1.

We write
Xn

a.s−→ X .



Almost sure convergence: In English

For a given outcome ω in the sample space Ω, we can ask whether

lim
n→∞

Xn(ω) = X (ω)

holds using the definition of non-stochastic convergence.

If the set of outcomes for which this holds has probability one, then

Xn
a.s.−−→ X

.
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Convergence in probability

The sequence of random variables {Xn} converges to the
random variable X in probability if for all ε > 0,

lim
n→∞

P(|Xn − X | > ε)→ 0.

We write
Xn

p−→ X .



Convergence in probability: In English

Fix an ε > 0 and compute

Pn(ε) = P(|Xn − X | > ε).

This is just a number and so, we can check whether Pn(ε)→ 0
using the definition of non-stochastic convergence.

If Pn(ε)→ 0 for all values ε > 0, then Xn
p−→ X .
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Convergence in mean and mean-square

The sequence of random variables {Xn} converges in mean to
the random variable X if

lim
n→∞

E [|Xn − X |] = 0.

We write
Xn

m−→ X .

{Xn} converges in mean-square to X if

lim
n→∞

E [|Xn − X |2] = 0.

We write
Xn

m.s.−−→ X .
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Convergence in distribution

Let {Xn} be a sequence of random variables and Fn(·) is the cdf of
Xn. Let X be a random variable with cdf F (·). {Xn} converges in
distribution, weakly converges or converges in law to X if

lim
n→∞

Fn(x) = F (x)

for all points x at which F (x) is continuous.

There are many ways of writing this

Xn
d−→ X

Xn
L−→ X

Xn =⇒ X .

We’ll use Xn
d−→ X .



Convergence in distribution: In English

Convergence in distribution describing the convergence of the cdfs.
It does not mean that the realizations of the random variables will
be close to each other.

Recall that

F (x) = P(X ≤ x) = P({ω ∈ Ω : X (ω) ≤ x})

As a result, Fn(x)→ F (x) does not make any statement about
Xn(ω) getting close to X (ω) for any ω ∈ Ω.



Convergence in distribution: Continuity?

Why is convergence in distribution restricted to the continuity
points of F (x)?

Example: Let Xn = 1/n with probability 1 and let X = 0 with
probability one. Then,

Fn(x) = 1(x ≥ 1/n)

F (x) = 1(x ≥ 0)

with Fn(0) = 0 for all n while F (0) = 1.

I As n→∞, Xn is getting closer and closer to X in the sense
that for all x 6= 0, Fn(x) is well approximated by F (x) but
NOT at x = 0!

I If we did not restrict convergence in distribution to the
continuity points, strange case where a non-stochastic
sequence {Xn} converges to X under the non-stochastic
definition of convergence but not converge in distribution.



Multivariate Convergence

We can extend each of these definitions to random vectors.

I The sequence of random vectors {Xn}
a.s−→ X if each element

of Xn converges almost surely to each element of X .
Analogous for convergence in probability.

I A sequence of random vectors converges into distribution to a
random vector if we apply the definition above to the joint
cumulative distribution function.

Cramer-Wold Device: Let {Zn} be a sequence of k-dimensional

random vectors. Then, Zn
d−→ Z if and only if λ′Zn

d−→ λ′Z for all
λ ∈ Rk .

I Simpler characterization of convergence in distribution for
random vectors.
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How do they relate to each other?

How do these different definitions of stochastic convergence relate
to each other? See picture below.

I We will skip the results but see the notes if you want more
details.



Counter-examples

Almost sure convergence does not imply convergence in mean.

Example: Let Xn be a random variable with

P(Xn = 0) = 1− 1

n2

P(Xn = 2n) =
1

n2
.

Xn
as−→ 0 but E [Xn] does converge in mean to 0.



Counter-examples

Almost sure convergence does not imply convergence in mean
square.

Example: Let Xn be a random variable with

P(Xn = 0) = 1− 1

n2

P(Xn = n) =
1

n2

Then, Xn
as−→ 0 but E [X 2

n ] = 1 for all n.
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Slutsky’s Theorem

Slutsky’s Theorem: Let c be a constant. Suppose that Xn
d−→ X

and Yn
p−→ Y . Then,

1. Xn + Yn
d−→ X + c .

2. XnYn
d−→ Xc .

3. Xn/Yn
d−→ X/c provided that c 6= 0.

If c = 0, then XnYn
p−→ 0.



Continuous Mapping Theorem

Continuous Mapping Theorem: Let g be a continuous function.
Then,

1. If Xn
d−→ X , then g(Xn)

d−→ g(X ).

2. If Xn
p−→ X , then g(Xn)

p−→ g(X ).
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big-O, little-o

Recall big-O and little-o notation for sequences of real numbers.

I Let {an} and {gn} be sequences of real numbers. We have
that

an = o(gn) if lim
n→∞

an
gn

= 0

and
an = O(gn) if |an

gn
| < M ∀n.

We also extend big-O and little-o notation to random variables



Op and op definition

Suppose {An} is a sequence of random variables. We write

An = op(Gn) if
An

Gn

p−→ 0

and
An = Op(Gn)

if for all ε > 0, there exists M ∈ R such that P(|An
Gn
| < M) > 1− ε

for all n.

I Often see Xn = X + op(1) to denote Xn
p−→ X .



Simple Examples

Let Xn ∼ N(0, n). Then,

Xn = Op(n1/2).

Why?

I Xn/n
1/2 ∼ N(0, 1) for all n. For any ε > 0, we can choose an

M such that P(|N(0, 1)| < M) > 1− ε
Moreover,

Xn = op(n)

Why?

I Xn/n ∼ N(0, 1/n). So,

P(|N(0, 1/n)|| > ε) = P(|N(0, 1)| > n1/2ε)→ 0.

I Alternatively, note that

E [(Xn/n − 0)2] = V (Xn/n) = 1/n→ 0

and so, Xn
ms−−→ 0.
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Law of Large Numbers

First building block of asymptotic results: Law of Large Numbers

Provides conditions under which sample averages converge to
expectations.

We’ll discuss three of them.



Weak Law of Large Numbers

WLLN: Let X1, . . . ,Xn be a sequence of random variables with
E [Xi ] = µ,V (Xi ) = σ2 <∞ and Cov(Xi ,Xj) = 0 for all i 6= j .
Then,

X̄n =
1

n

n∑
i=1

Xi
p−→ µ.

Proof: By Chebyshev’s inequality,

P(|X̄n − µ| > ε2) =≤ E [(X̄n − µ)2]/ε2 = σ2/nε2 → 0.

Alternatively,

V (X̄n) = E [(X̄n − µ)2] = σ2/n→ 0, E [X̄n] = µ

and so, X̄n
ms−−→ µ and the result follows.



Chebyshev’s Weak Law of Large Numbers

Chebyshev’s WLLN: Let X1,X2, . . . be a sequence of random
variables with E [Xi ] = µi ,V (Xi ) = σ2i and Cov(Xi ,Xj) = 0 for all
i 6= j . Define

X̄n =
1

n

n∑
i=1

Xi , µ̄n =
1

n

n∑
i=1

µi , σ̄2n =
1

n

n∑
i=1

σ2i

and assume that σ̄2n/n→ 0. Then,

X̄n − µ̄n
p−→ 0

.



Chebyshev’s WLLN Proof

First,

E [X̄n − µ̄n] = 0.

Second,

V (X̄n − µ̄n) = V (X̄n)

=
1

n2

∑
i ,j

Cov(Xi ,Xj)

=
1

n2

∑
i

σ2i = σ̄2n/n→ 0.

Therefore, X̄n − µ̄n
ms−−→ 0 and so, X̄n − µ̄n

p−→ 0.



Strong LLN

Strong LLN: If X1,X2, . . . are i.i.d with E [Xi ] = µ <∞, then

X̄n
as−→ µ.
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Central Limit Theorem

Second building block of asymptotic results: Central Limit
Theorems

Provides conditions under which properly centered sample averages
will converge in distribution to normal random variables.

We’ll discuss two of them.



Central Limit Theorem I

CLT I: Let Y1,Y2, . . . be an i.i.d. sequence of random variables
with E [Yi ] = 0,V (Yi ) = 1 for all i . Then,

√
nȲ =

1√
n

n∑
i=1

Yi
d−→ N(0, 1).



Central Limit Theorem II

CLT II: Let X1,X2, . . . be a sequence of i.i.d random variables with
mean µ and variance σ2. Then,

√
n(X̄n − µ)

d−→ N(0, σ2).

This generalizes to random vectors. If X1,X2, . . . are i.i.d random
vectors with mean vector µ and covariance matrix Σ. Then,

√
n(X̄n − µ)

d−→ N(0,Σ).



Exercise

Let Wi ∼ χ2
10 i.i.d and define W̄n = 1

n

∑n
i=1Wi .

1. Show that E [W̄n] = 10.

2. Show that W̄n
p−→ 10.

3. Show that 1
n

∑n
i=1(Wi − W̄ )2

p−→ V (Wi ).

4. Does E [ 1n
∑n

i=1(Wi − W̄ )2] = V (Wi )?
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Motivation

Suppose we have some estimator Tn of a parameter θ. We know
that

Tn
p−→ θ

√
n(Tn − θ)

d−→ N(0, σ2).

We are interested in estimating and conducting inference on g(θ),
where g is some continuously differentiable function.

I Natural estimator is g(Tn) and by CMT, we know that

g(Tn)
p−→ g(θ).

Can we construct the asymptotic distribution of g(Tn)?

√
n(g(Tn)− g(θ))

d−→?



The Delta Method

Delta Method: Let Yn be a sequence of random variables and let
Xn =

√
n(Yn − a) for some constant a. Let g(·) be a continuously

differentiable function. Suppose that

Xn =
√
n(Yn − a)

d−→ X ∼ N(0, σ2).

Then, √
n(g(Yn)− g(a))

d−→ g ′(a)N(0, σ2).

Multivariate Extension: he result becomes

√
n(g(Yn)− g(a))

d−→ GN(0,Σ)

where

G =
∂g(a)

∂a′
.



Delta Method: Proof Sketch

By the mean value theorem,

g(Yn) = g(a) + (Yn − a)g ′(Ỹn)

where Ỹn is some value between Yn and a.

I Recall mean value theorem. Let g(·) be a continuously
differentiable function and WLOG, let a < b. There exists
some c ∈ (a, b) such that g(b) = g(a) + g ′(c)(b − a).

We have that Yn
p−→ a. Since g is continuously differentiable, it

follows that g ′(Ỹn)
p−→ g ′(a). Why? So, it follows that

√
n(g(Yn)− g(a)) = g ′(Ỹn)

√
n(Yn − a)

= g ′(Ỹn)Xn
d−→ g ′(a)X

by Slutsky’s theorem.
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