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Statistical Inference

Observe data xi for i = 1, . . . , n.

I Assume the data from from a random experiment, modeled by
r.v. X with support X .

I {xi}ni=1 are realizations of X .

I Wish to use the data to learn something about FX (x)

A statistical model is a set of probability distributions indexed by
a parameter set.

F = {Pθ(x) : x ∈ X , θ ∈ Θ}

I Parametric if P can be indexed with a finite dimensional
parameter set. Otherwise, non-parametric.

Observe {xi}ni=1 and wish to make inferences about θ.



Statistical Models: Examples

Example:the set of normal distributions with variance equal to one.
Then, X = R, Θ = R and

fθ(x) =
1√
2π

e−
1
2

(x−θ)2
.

Wish to learn about θ.
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Frequentists vs. Bayesians

Suppose we have a ”good” statistical model.

FX (x) ∈ F

and there exists some θ∗ ∈ Θ such that FX (x) = Fθ∗(x)

The whole point of statistical inference is that θ∗ is unknown.

I How should we model an unknown θ∗ and how does that
choice affect how inference should be conducted.



Frequentists

Even though θ∗ is unknown, we should view it as fixed. The data
are modeled as random variables X1, . . . ,Xn drawn from the fixed,
unknown distribution Fθ∗(x).

The random experiment is:

1. Nature draws the data x1, . . . , xn from Fθ∗(x).

2. We observe x1, . . . , xn and plugs them into our estimator,
θ̂(·). Our estimate is θ̂(x1, . . . , xn).



Frequentists

Freqentists engage in the following thought experiment:

I Repeat the experiment many times. Each time, we obtain new
data xb1 , . . . , x

b
n and construct a new estimate,

θ̂(xb1 , . . . , x
b
n ) = θ̂b.

I What properties will the sampling distribution of my
estimator have?

I As n→∞, what properties will the distribution of of my
estimator have?

Frequentists focuses on the behavior of estimators in a repeated
random experiment, where we want to understand the properties
of θ̂(·) under the sampling distribution of the data.



Bayesians

Bayesians, model the unknown θ∗ as a random variable itself, with
its own distriution, Π(θ). This is the prior distribution.

I The prior encodes prior information about the parameter θ
available prior to observing the data. This may come from
prior experiments, observational studies or economic theory.



Bayesians

The random experiment then has an extra step:

1. Nature draws θ∗ from the prior, Π(θ). This is unobserved.

2. Nature draws realizations x1, . . . , xn from the distribution
Fθ∗(x). These are the data.

3. We observes x1, . . . , xn and plugs them into our estimator,
θ̂(·). Her estimate is θ̂(x1, . . . , xn).



Bayesians

What is the point of the prior? Bayes’ rule.

I Provides a logically consistent rule for combining prior
information with the observed data.

I x = (x1, . . . , xn) and fθ(x) is the density associated with
distribution Fθ(x) and π(θ) is defined analogously.

π(θ|x) =
fθ(x)π(θ)

f (x)

I marginal density of X : f (x) =
∫

Θ
fθ(x)π(θ)dθ

I likelihood function: fθ(x)
I posterior density: π(θ|x)

The posterior distribution of θ|x is the central object of interest in
Bayesian inference.



Bayesians: Brief Aside

You will often see Bayes’ rule written as

π(θ|x) ∝ fθ(x)π(θ)

In English Bayes’ rule says, ”the posterior is proportional to the
likelihood times the prior.”



Bayesians

Uses the posterior distribution to make inferences about θ.

I E.g. the ”posterior expectation of θ given the data x”

E [θ|x ].

is a common object of interest.

I Could also compute Med(θ|X ),P(θ < θ̃|X ) and so on.

The posterior density, x is fixed at its realized value and θ varies
over Θ.

I In this sense, bayesian inference is completely conditional on
the observed data.



Bayesians

Completely swept under the rug the very important question: How
do we choose a prior distribution?

I Short answer: it’s not easy! Requires a lot of careful thought.

I We’ll pick this issue up at times in Ec 2120.

I If interested, check out Kasy & Fessley (2018) - “how should
economic theory guide the choice of priors?”
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Conjugate Priors

Once we have a prior distribution and a likelihood function, the
only computational step is to use Bayes’ rule.

I Sounds simple... But this can often be a mess.

I Lots of Bayesian statistics focues on doing this in a
computationally feasible manner - MCMC, Variational
Inference.

Important tool in bayesian inference: conjugate priors.

I Prior distribution is conjugate for a given likelihood function
if the associated posterior distribution is in the same family of
distributions as the prior.

We’ll cover three useful conjugate priors that you will encounter.
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The data

The data are X = (X1, . . . ,Xn).Conditional on θ, Xi are i.i.d. with

Xi ∼ N(µ, σ2)

I σ2 is fixed and assumed known.

I Define the precision as λσ = 1/σ2.

I The parameter space is θ = R.

We observe realizations x = (x1, . . . , xn).



The likelihood

The likelihood function is

fµ(x) = f (x |µ)

= Πn
i=1f (xi |µ)

∝ Πn
i=1 exp(−1

2
λσ(xi − µ)2)

∝ exp(−1

2
λσ

n∑
i=1

(xi − µ)2)



The prior

The prior distribution for µ is also normal. We assume that

µ ∼ N(m, τ2).

I Useful to define the prior precision as λτ = 1/τ2.

So,

π(µ) ∝ exp(−1

2
λτ (µ−m)2)



The posterior

The posterior distribution is given by Bayes’ rule. This is a pain in
the butt but the result is really nice.

*Takes a deep breath*



The posterior

π(µ|x) ∝ fµ(x)π(µ)

∝ exp(−1

2
λσ

n∑
i=1

(xi − µ)2) exp(−1

2
λτ (µ−m)2)

∝ exp
(
− λσ

2

n∑
i=1

(x2
i − 2xiµ+ µ2)− λτ

2
(µ2 − 2µm + m2)

)
∝ exp

(
− nλσ + λτ

2
µ2 +

λσ
∑n

i=1 xi + λτm

2
µ
)

∝ exp
(
− nλσ + λτ

2
(µ2 −

λσ
∑n

i=1 xi + λτm

nλσ + στ
µ)
)

∝ exp
(
− nλσ + λτ

2
(µ2 − nλσ x̄ + λτm

nλσ + λτ
µ)
)

∝ exp
(
− nλσ + λτ

2
(µ2 − nλσ x̄ + λτm

nλσ + λτ
µ+ (

nλσ x̄ + λτm

nλσ + λτ
)2)
)



The posterior

So,

π(µ|x) ∝ exp
(
− nλσ + λτ

2
(µ− nλσ x̄ + λτm

nλσ + λτ
)2
)

and

µ|x ∼ N(
nλσ x̄ + λτm

nλσ + λτ
, nλσ + λτ ).



The posterior

As I said: This was a pain in the butt. Is there an easier way?

Yes! Use our results for the multivariate normal distribution.

X |µ ∼ N(µ, σ2In).

Can show that the marginal distribution of X is given

X ∼ N(m, (σ2 + τ2)In)

and that the joint distribution of X , µ is given by(
X
µ

)
∼ N(

(
m
m

)
,

(
(σ2 + τ2)In τ2l

τ2l ′ τ2

)
where l is a n × 1 vector of ones.



The posterior

It then follows that

µ|X = x ∼ N(m +
τ2

σ2 + τ2
l ′In(x −m), τ2 − τ2(σ2 + τ2)−1τ2l ′l).

Exactly as before!



The posterior

Posterior mean:

E [µ|x ] =
nλσ x̄ + λτm

nλσ + λτ

Posterior precision:
λ̄τ = nλσ + λτ

Interpretation:

I Posterior mean is a weighted average of the sample mean and
the prior mean in which the weights are the precisions.

I If λτ is large and the prior has a low variance, the prior mean
receives a larger weight.

I ”Shrinking” the posterior mean towards the prior



Machine learning aside

Machine learning aside:

Yi = Xiβ + εi , β|X ∼ N(0,Ω) εi |X , β ∼ N(0, σ2)i .i .d .

Joint likelihood of Y , β gives a ridge-type objective

∝ − 1

2σ2

∑
i

(Yi − βXi )
2 − 1

2
β′Ωβ

Maximum a posteriori estimator: Ridge regression.

Can similarly motivate lasso using this Bayesian approach.
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The data

D are X = (X1, . . . ,Xn).

I Conditional on θ, the Xi are i.i.d with

P(Xi = 1|θ) = θ, P(Xi = 0|θ) = 1− θ.

I The parameter space is Θ = [0, 1].

Observe realizations x = (x1, . . . , xn).



The likelihood

The likelihood function is then

fθ(x) = f (x |θ)

= P(X = x |θ)

= Πn
i=1P(Xi = xi |θ)

= Πn
i=1θ

yi (1− θ)1−yi

= θn1(1− θ)n0

where n1 =
∑n

i=1 yi and n0 =
∑n

i=1(1− yi ) = n − n1.



The prior

The prior distribution is a beta distribution with parameters
a, b > 0.

I Support is over [0, 1] with density

π(θ) ∝ θa−1(1− θ)b−1.

I Prior mean and variance are

E [θ] =
a

a + b
, V (θ) =

a

a + b

b

a + b

1

a + b + 1
.



The posterior

The posterior distribution is given by Bayes’ rule.

π(θ|x) ∝ fθ(x)π(θ)

∝ θa+n1−1(1− θ)b+n0−1

The posterior distribution is also a beta distribution with
parameters a + n1, b + n0.



The posterior

The posterior mean is then

E [θ|x ] =
a + n1

a + b + n
= λ

n1

n
+ (1− λ)

a

a + b

where λ = n
a+b+n .

I The posterior mean is a convex combination of the sample
mean n1/n and the prior mean a/(a + b).

I If a + b is small relative to n, then most of the weight is
placed on the sample mean.



Improper priors

What happens as a, b → 0? Prior becomes

π(θ) ∝ θ−1(1− θ)−1.

Not a probability density as it integrates to ∞ over [0, 1]. Call this
an improper prior.

But, the associated posterior distribution is well-defined.

I The posterior distribution is again a beta distribution but with
parameters, n1, n0.

I Note
E [θ|x ] =

n1

n
= x̄

That is, the posterior conditional expectation coincides with
the sample average
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The data

Data are X = (X1, . . . ,Xn).

I Each Xi takes on discrete set of values {αj : j = 1, . . . , J}.
I Conditional on θ, the Xi are i.i.d. with

P(Xi = αj |θ) = θj for j = 1, . . . , J.

I Parameter space is the unit simplex on RJ with

Θ = {θ ∈ RJ : θj ≥ 0,
J∑

j=1

θj = 1}.

Observe realizations x = (x1, . . . , xn).



The likelihood

The likelihood function is

fθ(x) = f (x |θ)

= Πn
i=1P(Xi = xi |θ)

= Πn
i=1ΠJ

j=1θ
1(xi=αj )
j

= ΠJ
j=1θ

nj
j

where nj =
∑n

i=1 1(xi = αj) for j = 1, . . . , J.



The prior

Prior distribution is a Dirichlet distribution with parameters
a1, . . . , aJ > 0.

I Generalizes a generalization of the beta distribution.

I Its support is over the unit simplex in RJ .

I Has density

π(u1, . . . , uJ) ∝ ΠJ
j=1u

aj−1
j .



The posterior

The posterior distribution is given by Bayes’ rule.

π(θ|x) ∝ fθ(x)π(θ)

∝ ΠJ
j=1θ

aj+nj−1
j .

The posterior distribution is also Dirichlet but with parameters
aj + nj for j = 1, . . . , J.

Can consider the improper prior with aj → 0 for each j = 1, . . . , J.
With this improper prior, the posterior distribution remains
Dirichlet and has parameters n1, . . . , nJ .



Representing the posterior

Fact: we can represent the Dirichlet distribution using independent
gamma distributed random variables.

I Very useful in deriving several properties of the Dirichlet
distribution and in simulations.

The gamma distribution with shape parameter a > 0 and scale
parameter b > 0 has density

g(u) ∝ ua−1 exp(−u/b)

with support over u > 0.

I Useful property that if Qj are independent gamma distributed
with parameters (aj , b), then∑

j

Qj ∼ gamma(
∑
j

aj , b).



Representing the posterior

Suppose Qj ∼ gamma(aj , 1) for j = 1, . . . , J and Q1, . . . ,Qj are
independent. Let

S =
J∑

j=1

Qj

and define
R = (Q1/S , . . . ,QJ/S)

I Can show that R ∼ Dirichlet(a1, . . . , aJ).

I J = 2:
R = (Q1/(Q1 + Q2),Q2/(Q1 + Q2))

where Q1/(Q1 + Q2) ∼ beta(a1, a2)



Representing the posterior

So, can represent the posterior distribution of θ as

θ|x ∼
( Q1∑J

j=1 Qj

, . . . ,
QJ∑J
j=1 Qj

)
,

where each Qj are mutually independent gamma random variables
with parameters a = nj + aj − 1, b = 1.

Component θj can be represented as

θj |x ∼
Qj

Qj +
∑

k 6=j QK

and so,
θj |x ∼ beta(nj + aj ,

∑
k 6=j

nk + ak)
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Exchangeability and de Finetti’s Theorem

So far, assumed that there is some prior distribution π over θ and
that conditional on θ, the observed data are i.i.d.

de Finetti’s Theorem, also known as the Representation
Theorem, provides a justification.

I If a sequence of random variables X1, . . . ,Xn are
exchangeable, then there exists a parameter θ and a prior
distribution π for θ such that the elements of the sequence are
i.i.d. conditional on θ.



Exchangeability

A finite sequence of random variables X1, . . . ,Xn is exchangeable
if its joint distribution F (·) satisfies

F (x1, . . . , xn) = F (xp(1), . . . , xp(n))

for all realizations (x1, . . . , xn) and all permutations p of {1, . . . , n}.
Any infinite sequence of random variables is exchangeable if every
finite subsequence is exchangeable.



Exchangeability

exchangeability is a weaker condition than i.i.d.

I If X1, . . . ,Xn are i.i.d., then the sequence is exchangeable.

I Elements of an exchangeable sequence are identically
distributed but need not be independent.



Example: Polya’s Urn

Urn with b black balls and w white balls.

I Draw a ball and note its color. Replace the ball in the urn and
add a additional balls of the same color to the urn.

I Let Xi = 1 if the i-th drawn ball is black and Xi = 0 if it is
white.

The sequence X1,X2, . . . is exchangeable. For example,

f (1, 1, 0, 1) =
b

b + w

b + a

b + w + a

w

b + w + 2a

b + 2a

b + w + 3a

=
b

b + w

w

b + w + a

b + a

b + w + 2a

b + 2a

b + w + 3a

= f (1, 0, 1, 1)



de Finetti’s Theorem: Binary Case

Let X1,X2, . . . be an exchangeable sequence of random variables
that take on the values {0, 1}. Then, there exists a random
variable Θ with cdf FΘ(·) such that

f (x1, . . . , xn) =

∫ 1

0
θn1(1− θ)n−n1dFΘ(θ)

where

n1 =
n∑

i=1

xi

and

Θ = lim
n→∞

1

n

n∑
i=1

Xi

with FΘ(θ) = limn→∞ P( 1
n

∑n
i=1 Xi ≤ θ).



Interpretation

It is as if the sequence of Bernoulli random variables are i.i.d.
conditional on Θ.

The distribution of Θ is determined by the limiting distribution of
the sample frequency. We can view FΘ as a prior distribution.

I One way to think about the prior distribution.

I By de Finetti’s Theorem, the prior distribution FΘ is
determined by the limiting distribution of the sample
frequency and so, we can view it as reflecting the researcher’s
subjective beliefs about the long-run frequency.
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