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These notes provide a brief introduction into Bayesian inference. It is
intended to provide a simple, very high-level framework for thinking
about many of the tools that will be discussed in 2120. I draw heavily
on Chapters 2-3 of Computer Age Statistical Inference by Bradley Efron
and Trevor Hastie and Gary Chamberlain’s lecture note 5 for Ec 2120

for these notes. 2 2 This is an excellent textbook and its
pdf is available for free online!DISCLAIMERS:

1. There is absolutely no expectation for you to read these notes prior to
math camp. Maximize utility as you see fit.

2. You are not expected to master of this content before the fall. This
is intended to provide a brief refresher on some basic concepts
and preview some material that will be covered in the first year
econometrics sequence. If some of the material is unfamiliar, do not
worry.

3. These notes contain more content than we will have time to cover
during math camp. This is intentional. Hopefully these notes can be
a reference material for you throughout the year.
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What is Bayesian Inference?

We begin by observing some data xi for i = 1, . . . , n and assume that
these data are the result of some random experiment. We model this
random experiment with random variable X with support X and
so, the data {xi}n

i=1 are realizations of X. We wish to use the data to
learn something about the distribution of X, FX(x).

To do so, we construct a statistical model. A statistical model is
a set of probability distributions indexed by a parameter set. That
is, F = {Pθ(x) : x ∈ X , θ ∈ Θ} is a statistical model. A model is
parametric if P can be indexed with a finite dimensional parameter
set. Otherwise, it is non-parametric. The econometrician observes
{xi}n

i=1 and wishes to make inferences about θ.

Example 0.1. Suppose our statistical model is the set of normal distribu-
tions with variance equal to one. Then, X = R, Θ = R and

fθ(x) =
1√
2π

e−
1
2 (x−θ)2

.

Example 0.2. Suppose our statistical model is the set of Poisson distribu-
tions. Then, X = N , Θ = R+ and

fθ(x) = e−θθx/x!.

So, both frequentists and bayesians begin with a probability model
and wish to learn about the parameter θ. What makes them differ-
ent? Go back to the definition of a statistical model. Suppose we have
a "good" statistical model. That is, FX(x) ∈ F and so, there exists
some θ∗ ∈ Θ such that FX(x) = Fθ∗(x). The whole point of statistical
inference is that θ∗ is unknown. I think the key difference between fre-
quentists and bayesians is in how they model an unknown θ∗ and
what that, in turn, implies for how inference should be conducted.3 3 If you ask some people, they will

emphasize that the difference lies
in how frequentists and bayesians
interpret probability.

Frequentists assume that even though θ∗ is unknown, we should
view it as fixed. The data are modeled as random variables X1, . . . , Xn

drawn from the fixed, unknown distribution Fθ∗(x). Put in another
way, frequentists model the random experiment as:

1. Nature draws realizations x1, . . . , xn from the distribution Fθ∗(x).
These are the data.

2. The econometrician observes the data x1, . . . , xn and plugs them
into her estimator, θ̂(·). Her estimate of θ̂∗ is θ̂(x1, . . . , xn).

With this in mind, frequentists then perform the following though
experiment.

Suppose I were to repeat the random experiment above many
times. Each time I repeat the experiment, I obtain new data
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xb
1, . . . , xb

n and construct a new estimate using my estimator,
θ̂(xb

1, . . . , xb
n) = θ̂b. What properties will the sampling distribu-

tion of my estimator have? That is, as B → ∞, what properties
will the distribution of (θ̂1, . . . , θ̂B) have?

For this reason, Bradley Efron and Trevor Hastie note that "behavior-
ism" would be a better name for frequentism because it better focuses
attention on the emphasis placed the behavior of estimators in a re-
peated random experiment.4 An example of a desirable property 4 Another way of thinking about this

is: In frequentist calculations, θ∗ is
fixed and the data varies over different
possible realizations conditional on θ∗.

for frequentists is unbiasedness. An estimator θ̂(·) is unbiased if
E[θ̂(X1, . . . , Xn)] = θ∗. Note that this expectation is taken over the
sampling distribution of the estimator θ̂.

Bayesians, on the other hand, prefer to model the unknown θ̂∗

as a random variable itself. θ̂∗ is a random variable that has its own
distriution, Π(θ). This is called the prior distribution. The random
experiment then has an extra step:

1. Nature draws θ∗ from the prior distribution, Π(θ). This is unob-
served.

2. Nature draws realizations x1, . . . , xn from the distribution Fθ∗(x).
These are the data.

3. The econometrician observes x1, . . . , xn and plugs them into her
estimator, θ̂(·). Her estimate is θ̂(x1, . . . , xn).

Clearly, the prior distribution will be an important part of Bayesian
inference. How should we think about it? For now, think of the prior
distribution as encoding prior information about the parameter θ avail-
able to the econometrician prior to observing the data. This may
come from prior experiments, observational studies or economic
theory.

What is the point of adding this additional layer? The payoff
comes from the use of Bayes’ rule. Bayes’ rule provides a logically
consistent rule for combining prior information with the observed
data. Let x = (x1, . . . , xn) and let fθ(x) denote the density associated
with the distribution Fθ(x) and π(θ) is defined analogously. Bayes’
rule tells us

π(θ|x) = fθ(x)π(θ)

f (x)

where f (x) =
∫

Θ fθ(x)π(θ)dθ is the marginal density of X. fθ(x)
is the likelihood function. We call π(θ|x) the posterior density
of θ and it is the key object of Bayesian inference. 5 The bayesian 5 You will often see Bayes’ rule written

as
π(θ|x) ∝ fθ(x)π(θ)

where ∝ means "is proportional to." In
English Bayes’ rule says, "the posterior
is proportional to the likelihood times
the prior."

then uses the posterior distribution to make inferences about θ. For
example, a common object of interest is the "posterior expectation of
θ given the data x"

E[θ|x].



harvard economics math camp 2018: econometrics, bayesian inference 4

However with the posterior distribution, the bayesian immedi-
ately answers all possible questions about θ. She could compute
E[θ|x], Med(θ|X), P(θ < θ̃|X) and so on. It is critical to note that in
the posterior density, x is fixed at its realized value and θ varies over
Θ. In this sense, bayesian inference is completely conditional on the
observed data.

Conjugate Priors

As mentioned above, the choice of the prior distribution is the key
step of bayesian inference. Once we have a prior distribution and
a likelihood function, the only computational step is to use Bayes’
rule to form the posterior. While it sounds simple, this can often be
a mess unless we carefully choose the prior distribution for a given
likelihood function.

As a result, an important tool in bayesian inference are conjugate
priors. A prior distribution is conjugate for a given likelihood func-
tion if the associated posterior distribution is in the same family of
distributions as the prior. The rest of this section covers some com-
mon conjugate priors that you will encounter throughout the first
year econometrics sequence and in other areas of economics.

Normal-Normal model

The data are X = (X1, . . . , Xn). We assume that conditional on θ, the
Xi are i.i.d. with

Xi ∼ N(µ, σ2)

σ2 is fixed and assumed known. It is useful to define the precision
as λσ = 1/σ2. The parameter space is θ = R. Suppose we observe
realizations x = (x1, . . . , xn). The likelihood function is then

fµ(x) = f (x|µ)
= Πn

i=1 f (xi|µ)

∝ Πn
i=1 exp(−1

2
λσ(xi − µ)2)

∝ exp(−1
2

λσ

n

∑
i=1

(xi − µ)2)

The prior distribution for µ is also normal. We assume that

µ ∼ N(m, τ2).

Again, it is useful to define the prior precision as λτ = 1/τ2. We
have that

π(µ) ∝ exp(−1
2

λτ(µ−m)2)
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The posterior distribution is given by Bayes’ rule. We have that6 6 The key to making this calculation
easy is to remember that the posterior
density is a function of µ. x, m are
constants and so, we can drop them
along the way.

π(µ|x) ∝ fµ(x)π(µ)

∝ exp(−1
2

λσ

n

∑
i=1

(xi − µ)2) exp(−1
2

λτ(µ−m)2)

∝ exp
(
− λσ

2

n

∑
i=1

(x2
i − 2xiµ + µ2)− λτ

2
(µ2 − 2µm + m2)

)
∝ exp

(
− nλσ + λτ

2
µ2 +

λσ ∑n
i=1 xi + λτm

2
µ
)

∝ exp
(
− nλσ + λτ

2
(µ2 − λσ ∑n

i=1 xi + λτm
nλσ + στ

µ)
)

∝ exp
(
− nλσ + λτ

2
(µ2 − nλσ x̄ + λτm

nλσ + λτ
µ)
)

∝ exp
(
− nλσ + λτ

2
(µ2 − nλσ x̄ + λτm

nλσ + λτ
µ + (

nλσ x̄ + λτm
nλσ + λτ

)2)
)

∝ exp
(
− nλσ + λτ

2
(µ− nλσ x̄ + λτm

nλσ + λτ
)2
)

And so, we have shown that the posterior distribution is also nor-
mally distributed with posterior mean

E[µ|x] = nλσ x̄ + λτm
nλσ + λτ

and posterior precision

λ̄τ = nλσ + λτ

What is the interpretation of the posterior mean? It is a weighted av-
erage of the sample mean and the prior mean in which the weights
are the precisions. Therefore, if λτ is large and the prior has a low
variance, the prior mean receives a larger weight. Alternatively,
we can interpret this as "shrinking" the posterior mean towards the
prior.7 7 If you are familiar with machine

learning jargon, you can write down
Bayesian model similar to this to
motivate Ridge regression.

We could have derived this using our results from the multivariate
normal distribution. We have that

X|µ ∼ N(µ, σ2 In).

You can show that the marginal distribution of X is given

X ∼ N(m, (σ2 + τ2)In)

and that the joint distribution of X, µ is given by(
X
µ

)
∼ N(

(
m
m

)
,

(
(σ2 + τ2)In τ2l

τ2l′ τ2

)



harvard economics math camp 2018: econometrics, bayesian inference 6

where l is a n× 1 vector of ones. It then follows that

µ|X = x ∼ N(m +
τ2

σ2 + τ2 l′ In(x−m), τ2 − τ2(σ2 + τ2)−1τ2l′l).

This is the same as the result we derived.

Exercise 0.1. Use the properties of the multivariate normal distribution to
derive the posterior distribution.

Beta-Bernoulli model

The data are X = (X1, . . . , Xn). We assume that conditional on θ, the
Xi are i.i.d with

P(Xi = 1|θ) = θ, P(Xi = 0|θ) = 1− θ.

The parameter space is Θ = [0, 1]. Suppose we observe realizations
x = (x1, . . . , xn). The likelihood function is then

fθ(x) = f (x|θ)
= P(X = x|θ)
= Πn

i=1P(Xi = xi|θ)
= Πn

i=1θyi (1− θ)1−yi

= θn1(1− θ)n0

where n1 = ∑n
i=1 yi and n0 = ∑n

i=1(1 − yi) = n − n1. The prior
distribution is a beta distribution with parameters a, b > 0. Its
support is over [0, 1] with density

π(θ) ∝ θa−1(1− θ)b−1.

The prior mean and variance are

E[θ] =
a

a + b
, V(θ) =

a
a + b

b
a + b

1
a + b + 1

.

The posterior distribution is given by Bayes’ rule. We have that

π(θ|x) ∝ fθ(x)π(θ)

∝ θa+n1−1(1− θ)b+n0−1

Therefore, the posterior distribution is also a beta distribution and
has parameters a + n1, b + n0. The posterior mean is then

E[θ|x] = a + n1

a + b + n
= λ

n1

n
+ (1− λ)

a
a + b

where λ = n
a+b+n . In other words, the posterior mean is a convex

combination of the sample mean n1/n and the prior mean a/(a + b).
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Note that if a + b is small relative to n, then most of the weight is
placed on the sample mean.

What happens as a, b→ 0? The prior becomes

π(θ) ∝ θ−1(1− θ)−1.

This is not a probability density as it integrates to ∞ over [0, 1]. We
call this an improper prior. However, the associated posterior distri-
bution is well-defined. In this case, the posterior distribution is again
a beta distribution but with parameters, n1, n0. For this improper
prior,

E[θ|x] = n1

n
= x̄

That is, the posterior conditional expectation coincides with the sam-
ple average (i.e. the frequentist estimate of θ).

Multinomial-Dirichlet model

The data are X = (X1, . . . , Xn). Each Xi takes on a discrete set of
values {αj : j = 1, . . . , J}. We assume that conditional on θ, the Xi are
i.i.d. with

P(Xi = αj|θ) = θj f orj = 1, . . . , J.

The parameter space is the unit simplex on RJ with

Θ = {θ ∈ RJ : θj ≥ 0,
J

∑
j=1

θj = 1}.

We observe realizations x = (x1, . . . , xn). The likelihood function is

fθ(x) = f (x|θ)
= Πn

i=1P(Xi = xi|θ)

= Πn
i=1ΠJ

j=1θ
1(xi=αj)

j

= ΠJ
j=1θ

nj
j

where nj = ∑n
i=1 1(xi = αj) for j = 1, . . . , J.

The prior distribution is a Dirichlet distribution with parameters
a1, . . . , aJ > 0. The Dirichlet distribution is a generalization of the
beta distribution. Its support is over the unit simplex in RJ and has
density

π(u1, . . . , uJ) ∝ ΠJ
j=1u

aj−1
j .

The posterior distribution is then given by Bayes’ rule. We have
that

π(θ|x) ∝ fθ(x)π(θ)

∝ ΠJ
j=1θ

aj+nj−1
j .
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The posterior distribution is also Dirichlet but with parameters aj + nj

for j = 1, . . . , J. As in the Beta-Bernoulli model, we can consider the
improper prior with aj → 0 for each j = 1, . . . , J. With this improper
prior, the posterior distribution remains Dirichlet and has parameters
n1, . . . , nJ .

It turns out that we can represent the Dirichlet distribution using
independent gamma distributed random variables. This is very use-
ful in deriving several properties of the Dirichlet distribution and in
simulations. The gamma distribution with shape parameter a > 0
and scale parameter b > 0 has density

g(u) ∝ ua−1 exp(−u/b)

with support over u > 0. The gamma distribution has the useful
property that if Qj are independent gamma distributed with parame-
ters (aj, b), then their sum ∑j Qj ∼ gamma(∑j aj, b).

Suppose Qj ∼ gamma(aj, 1) for j = 1, . . . , J and Q1, . . . , Qj are

independent. Let S = ∑J
j=1 Qj. Define

R = (Q1/S, . . . , QJ/S)

and one can show that R ∼ Dirichlet(a1, . . . , aJ). For the case J = 2,
we have that

R = (Q1/(Q1 + Q2), Q2/(Q1 + Q2))

where Q1/(Q1 + Q2 ∼ beta(a1, a2).
For the posterior distribution of θ, we can represent it as

θ|x ∼
( Q1

∑J
j=1 Qj

, . . . ,
QJ

∑J
j=1 Qj

)
where each Qj are mutually independent gamma random variables
with parameters a = nj + aj − 1, b = 1. So a component θj can be
represented as

θj|x ∼
Qj

Qj + ∑k 6=j QK

and so, θj ∼ beta(nj + aj, ∑k 6=j nk + ak).

Exchangeability and de Finetti’s Theorem

So far, we have assumed that there is some prior distribution π over
θ and that conditional on θ, the observed data are i.i.d. de Finetti’s
Theorem, also known as the Representation Theorem, justifies this
set-up. de Finetti’s Theorem and related generalizations show that
if a sequence of random variables X1, . . . , Xn are exchangeable, then
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there exists a parameter θ and a prior distribution π for θ such that
the elements of the sequence are i.i.d. conditional on θ. This is a
powerful result.

Definition 0.1. A finite sequence of random variables X1, . . . , Xn is ex-
changeable if its joint distribution F(·) satisfies

F(x1, . . . , xn) = F(xp(1), . . . , xp(n))

for all realizations (x1, . . . , xn) and all permutations p of {1, . . . , n}. Any
infinte sequence of random variables is exchangeable if every finite subse-
quence is exchangeable.

Remark 0.1. Note that exchangeability is a weaker condition than i.i.d.
If X1, . . . , Xn are i.i.d., then the sequence is exchangeable. However, the
elements of an exchangeable sequence are identically distributed but need not
be independent.

Example 0.3. Polya’s Urn
Consider an urn with b black balls and w white balls. Draw a ball and

note its color. Replace the ball in the urn and add a additional balls of the
same color to the urn. Let Xi = 1 if the i-th drawn ball is black and Xi = 0
if it is white. The sequence X1, X2, . . . is exchangeable. For example,

f (1, 1, 0, 1) =
b

b + w
b + a

b + w + a
w

b + w + 2a
b + 2a

b + w + 3a

=
b

b + w
w

b + w + a
b + a

b + w + 2a
b + 2a

b + w + 3a
= f (1, 0, 1, 1)

Theorem 0.1. de Finetti’s Theorem
Let X1, X2, . . . be an exchangeable sequence. Then, there exists a random

variable Θ with cdf FΘ(·) such that

f (x1, . . . , xn) =
∫ 1

0
θn1(1− θ)n−n1 dFΘ(θ)

where

n1 =
n

∑
i=1

xi

and

Θ = lim
n→∞

1
n

n

∑
i=1

Xi

with FΘ(θ) = limn→∞ P( 1
n ∑n

i=1 Xi ≤ θ).

It is as if the sequence of Bernoulli random variables are i.i.d. con-
ditional on Θ. Moreover, the distribution of Θ is determined by the
limiting distribution of the sample frequency. We can view FΘ as a
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prior distribution. How do we interpret this? It provides us with a
way to think about the prior distribution. By de Finetti’s Theorem,
the prior distribution FΘ is determined by the limiting distribution
of the sample frequency and so, we can view it as reflecting the re-
searcher’s subjective beliefs about the long-run frequency. de Finetti’s
Theorem generalizes in many ways. See, for instance, Diaconis (1988)
for more results.



harvard economics math camp 2018: econometrics, bayesian inference 11

References

Diaconis, P. (1988). Recent Progress on de Finetti’s Notions of Ex-
changeability. Bayesian Statistics.
Efron, Bradley and Trevor Hastie. (2016). Computer Age Statistical
Inference.
Gelman et al. (2013). Bayesian Data Analysis.
Geweke, John. (2005). Contemporary Bayesian Econometrics and Statis-
tics.
Lauritzen, Steffen. Exchangeability and de Finetti’s Theorem. Lecture
notes 2007.
Poirier, Dale. (2011). Exchangeability, Representation Theorem and
Subjectivity. The Oxford Handbook of Bayesian Econometrics.


	What is Bayesian Inference?
	Conjugate Priors
	Exchangeability and de Finetti's Theorem

