Probability Review I Harvard Math Camp - Econometrics

Ashesh Rambachan

Summer 2018

Random Experiments

The sample space and events σ -algebra and measures Basic probability rules

Conditional Probability

Random Experiments

The sample space and events σ -algebra and measures Basic probability rules

Conditional Probability

Random Experiments

The sample space and events

 σ -algebra and measures Basic probability rules

Conditional Probability

The sample space and events

We wish to model a random experiment - an experiment/process whose outcome cannot be predicted beforehand. What are the building blocks?

- ▶ The sample space Ω is the set of all possible outcomes of a random experiment. We denote an outcome as $\omega \in \Omega$.
- An event A is a subset of the sample space, A ⊆ Ω. Let A denote the family of all events.

Simple examples

Example: Suppose we survey 10 randomly selected people on their employment status and count how many are unemployed.

$$\Omega=\{0,1,2,\ldots,10\}$$

A is the event that more than 30% of those surveyed are unemployed.

$$A = \{4, 5, 6, \dots, 10\}$$

Example: Suppose we ask a random person what is their income.

$$\Omega = \mathbb{R}_+$$

A is the event that the person earns between \$30,000 and \$40,000.

$$A = [30,000,40,000]$$

Random Experiments

The sample space and events σ -algebra and measures Basic probability rules

Conditional Probability Definition Bayes' rule and more

Putting structure on the set of events

To be able to sensibly define probabilities, we need to place some additional structure on the set of events, A.

Let Ω be a set and $\mathcal{A}\subseteq 2^{\Omega}$ be a family of its subsets. \mathcal{A} is a σ -algebra if and only if it satisfies the following

- 1. $\Omega \in \mathcal{A}$.
- 2. \mathcal{A} is closed under complements: $A \in \mathcal{A}$ implies that $A^{\mathcal{C}} = \Omega A \in \mathcal{A}$.
- 3. \mathcal{A} is closed under countable union: If $A_n \in \mathcal{A}$ for n = 1, 2, ..., then $\bigcup_n A_n \in \mathcal{A}$.
- \Longrightarrow We assume that \mathcal{A} is a σ -algebra. (Ω, \mathcal{A}) is a measurable space and $A \in \mathcal{A}$ is measurable with respect to \mathcal{A} .

Properties of a σ -algebra

If \mathcal{A} is a σ -algebra, then ...

- 1. $\emptyset \in \mathcal{A}$.
- 2. \mathcal{A} is closed under countable intersection i.e, if $A_n \in \mathcal{A}$ for n = 1, 2, ..., then $\bigcap_n A_n \in \mathcal{A}$.

Why?

- 1. This one's simple.
- 2. Hint: DeMorgan's Law $(A \cup B)^C = A^C \cap B^C$.

What is probability?

We're now ready to finally define what is probability! We will provide the "mathematical" definition.

▶ Not defined directly as a "long-run frequency" or 'subjective beliefs." But it will capture all of the properties associated with these.

Let (Ω, \mathcal{A}) be a measurable space. A **measure** is a function, $\mu: \mathcal{A} \to \mathbb{R}$ such that

- 1. $\mu(\emptyset) = 0$.
- 2. $\mu(A) \geq 0$ for all $A \in \mathcal{A}$.
- 3. If $A_n \in \mathcal{A}$ for n = 1, 2, ... with $A_i \cap A_j = \emptyset$ for $i \neq j$, then

$$\mu(U_nA_n)=\sum_n\mu(A_n)$$

If $\mu(\Omega) = 1$, μ is a **probability measure**, denoted as $P : \mathcal{A} \to [0, 1]$.

Putting it all together

So, we model a random experiment as a **probability space**, (Ω, \mathcal{A}, P) .

- 1. Ω set of outcomes.
- 2. A σ -algebra on the set of outcomes.
- 3. P a probability measure defined on the σ -algebra.

Random Experiments

The sample space and events σ -algebra and measures

Basic probability rules

Conditional Probability Definition Bayes' rule and more Independence

Basic probability rules

We can prove all of the usual probability rules from this.

Consider a probability space (Ω, \mathcal{A}, P) . The following hold:

- 1. For all $A \in \mathcal{A}$, $P(A^C) = 1 P(A)$.
- 2. $P(\Omega) = 1$.
- 3. If $A_1, A_2 \in \mathcal{A}$ with $A_1 \subseteq A_2$, then $P(A_1) \leq P(A_2)$.
- 4. For all $A \in \mathcal{A}$, $0 \le P(A) \le P(1)$.
- 5. If $A_1, A_2 \in \mathcal{A}$, then

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

Random Experiments

The sample space and events σ -algebra and measures Basic probability rules

Conditional Probability

Random Experiments

The sample space and events σ -algebra and measures Basic probability rules

Conditional Probability Definition

Bayes' rule and more Independence

Conditional Probability

Given a random experiment and the information that event B has occurred, what is the probability that the outcome also belongs to event A?

Let $A, B \in \mathcal{A}$ with P(B) > 0. The conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- ▶ P(A|B) is a probability measure so all the usual probability rules apply!
- ▶ We use conditioning to describe the partial information that an event *B* gives about another event *A*.

Implies that

$$P(A \cap B) = P(A|B)P(B).$$

Random Experiments

The sample space and events σ -algebra and measures Basic probability rules

Conditional Probability

Definition

Bayes' rule and more

Independence

Multiplication Rule

$$P(\cap_{i=1}^{n} A_i) = P(A_1)P(A_2|A_1)P(A_3|A_2 \cap A_1) \dots P(A_n|\cap_{i=1}^{n-1} A_i)$$

Proof?

The Law of Total Probability

Consider K disjoint events C_k that partition Ω . That is, $C_i \cap C_j = \emptyset$ for all $i \neq j$ and $\bigcup_{i=1}^K C_i = \Omega$. Let C be some event.

$$P(C) = \sum_{i=1}^{K} P(C|C_i)P(C_i)$$

Proof?

Bayes' Rule

Bayes' Rule:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^C)P(B^C)}$$

► Proof?

Definitely the most important probability rule out there...

Random Experiments

The sample space and events σ -algebra and measures Basic probability rules

Conditional Probability

Independence

What if event B has no information about event A?

Two events A, B are **independent** if

$$P(A|B) = P(A)$$

Equivalently,

$$P(B|A) = P(B)$$

or

$$P(A \cap B) = P(A)P(B).$$

Independence

Let E_1, \ldots, E_n be events. E_1, \ldots, E_n are **jointly independent** if for any i_1, \ldots, i_k

$$P(E_{i_1}|E_{i_2}\cap\ldots\cap E_{i_k})=E_{i_1}$$

Given an event C, events A, B are conditionally independent if

$$P(A \cap B|C) = P(A|C)P(B|C).$$