Probability Review II Harvard Math Camp - Econometrics

Ashesh Rambachan

Summer 2018

(ロ)、(型)、(E)、(E)、 E) の(の)

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

Random Variables

Defining Random Variables

Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

Random Variables: Borel σ -algebra

Going to present a measure-theoretic definition of random variables.

- First building block: Borel σ -algebra
 - Ω = ℝ, A = collection of all open intervals. The "smallest" σ-algebra containing all open sets is the Borel σ-algebra, denoted as B.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- B contains all closed intervals. Why?
- Higher-dimensions: B = smallest σ-algebra containing all open balls.

Second building block

Definition: Let $(\Omega, \mathcal{A}, \mu)$ and $(\Omega', \mathcal{A}', \mu')$ be two measure spaces. Let $f : \Omega \to \Omega'$ be a function. f is **measurable** if and only if $f^{-1}(\mathcal{A}') \in \mathcal{A}$ for all $\mathcal{A}' \in \mathcal{A}'$.

What in the world...

For a given set of values in the function's range, we can "measure" the subset of the function's domain upon which these values occur.

• $\mu(f^{-1}(A'))$ is well-defined.

Random variables: Measurable functions

Important case:

$$(\Omega', \mathcal{A}', \mu') = (\mathcal{R}, \mathcal{B}, \lambda).$$

 λ is the lebesgue measure on \mathbb{R} . In this case, f will be real-valued. f is μ -measurable iff

$$f^{-1}((-\infty,c)) = \{\omega \in \Omega : f(\omega) < c\} \in \mathcal{A} \quad orall c \in \mathbb{R}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Consider a probability space (Ω, \mathcal{A}, P) . A **random variable** is simply a measurable function from the sample space Ω to the real-line.

Formal definition: Let (Ω, \mathcal{A}, P) be a probability space and $X : \Omega \to \mathbb{R}$ is a function. X is a **random variable** if and only if X is *P*-measurable. That is, $X^{-1}(B) \in \mathcal{A}$ for all $B \in \mathcal{B}$ where \mathcal{B} is the Borel σ -algebra.

Whew... done with that now.

Random Variables

Defining Random Variables Cumulative Distribution Functions

Joint Distributions Conditioning and Independence Transformations of Random Variables

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

Let X be a random variable. The **cumulative distribution** function (cdf) $F : \mathbb{R} \to [0, 1]$ of X is defined as

$$F_X(x) = P(X^{-1}(x)) = P(\{\omega \in \Omega : X(\omega) \le x\}).$$

We write

$$F_X(x) = P(X \leq x).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $(\mathbb{R}, \mathbb{B}, F_X)$ form a probability space.

Cumulative Distribution Function

The cumulative distribution function F_X has the following properties:

1. For $x_1 \le x_2$,

$$F_X(x_2) - F_X(x_1) = P(x_1 < X < x_2).$$

- 2. $\lim_{x\to-\infty} F_X(x) = 0$, $\lim_{x\to\infty} F_X(x) = 1$.
- 3. $F_X(x)$ is non-decreasing.
- 4. $F_X(x)$ is right-continuous: $\lim_{x\to x_0^+} F_X(x) = F_X(x_0)$.

Cumulative Distribution Function

The **quantiles** of a random variable X are given by the inverse of its cumulative distribution function.

The quantile function is

$$Q(u) = \inf\{x : F_X(x) \ge u\}.$$

If F_X is invertible, then

$$Q(u)=F_X^{-1}(u).$$

For any function F that satisfies the properties of a cdf listed above, we can construct a random variable whose cdf is F.

• $U \sim U[0,1]$ and $F_U(u) = u$ for all $u \in [0,1]$. Define

$$Y=Q(U),$$

where Q is the quantile function associated with F. When F is invertible, we have

$$F_Y(y) = P(F^{-1}(U) \le y) = P(U \le F(y)) = F(y)$$

Discrete Random Variables

If F_X is constant except at a countable number of points (i.e. F_X is a step function), then we say that X is a **discrete random variable**.

$$p_i = P(X = x_i) = F_X(x_i) - \lim_{x \to x_i^-} F_X(x)$$

Use this to define the **probability mass function** (pmf) of X.

$$f_X(x) = \begin{cases} p_i & \text{if } x = x_i, \quad i = 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

We can write

$$P(x_1 < X \le x_2) = \sum_{x_1 < x \le x_2} f_X(x).$$

Continuous Random Variables

If F_X can be written as

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

where $f_X(x)$ satisfies

$$egin{aligned} & f_X(x) \geq 0 \quad orall x \in \mathbb{R} \ & \int_{-\infty}^\infty f_X(t) dt = 1, \end{aligned}$$

we say that X is a **continuous random variable**. At the points where f_X is continuous,

$$f_X(x) = rac{dF_X(x)}{dx}.$$

We call $f_X(x)$ the **probability density function** (pdf) of X. We call

$$S_X = \{x : f_X(x) > 0\}$$

- ロ ト - 4 回 ト - 4 □ - 4

the **support** of *X*.

Continuous Random Variables

Note that for $x_2 \ge x_1$,

$$P(x_1 < X \le x_2) = F_X(x_2) - F_X(x_1)$$

= $\int_{x_1}^{x_2} f_X(t) dt$

and that

$$P(X=x)=0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

for a continuous random variable.

Random Variables

Defining Random Variables Cumulative Distribution Functions

Joint Distributions

Conditioning and Independence Transformations of Random Variables

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

Joint Distributions

Let X, Y be two scalar random variables. A random vector (X, Y) is a measurable mapping from Ω to \mathbb{R}^2 .

The joint cumulative distribution function of X, Y is

$$egin{aligned} F_{X,Y}(x,y) &= P(X \leq x, Y \leq y) \ &= P(\{\omega: X(\omega) \leq x\} \cap \{\omega: Y(\omega) \leq y\}) \end{aligned}$$

(X, Y) is a discrete random vector if

$$F_{X,Y}(x,y) = \sum_{u \leq x} \sum_{v \leq y} f_{X,Y}(u,v),$$

where $f_{X,Y}(x, y) = P(X = x, Y = y)$ is the joint probability mass function of (X, Y).

Joint Distributions

(X, Y) is a continuous random vector if

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) dv du,$$

where $f_{X,Y}(x, y)$ is the joint probability density function of (X, Y). As before,

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$$

at the points of continuity of $F_{X,Y}$.

Joint to Marginal

From the joint cdf of (X, Y), we can recover the marginal cdfs.

$$F_X(x) = P(X \le x)$$

= $P(X \le x, Y \le \infty)$
= $\lim_{y \to \infty} F_{X,Y}(x, y).$

We can also recover the marginal pdfs from the joint pdf:

$$f_X(x) = \sum_y f_{X,Y}(x,y)$$
 if discrete

and

$$f_X(x) = \int_{S_y} f_{X,Y}(x,y) dy$$
 if continuous.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions

Conditioning and Independence

Transformations of Random Variables

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

Conditioning & Random Variables: Discrete case

Consider x with $f_X(x) > 0$. The **conditional pmf of** Y **given** X = x is $f_X \times (x, y)$

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$

This satisfies

$$f_{Y|X}(y|x) \ge 0$$

 $\sum_{y} f_{Y|X}(y|x) = 1.$

• $f_{Y|X}(y|x)$ is a well-defined pmf. The **conditional cdf** of Y given X = x is

$$F_{Y|X}(y|x) = P(Y \leq y|X = x) = \sum_{v \leq y} f_{Y|X}(v|x)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conditioning & Random Variables: Continuous case

Consider x with $f_X(x) > 0$, the **conditional pdf** of Y given X = x is $f_{XY}(x, y)$

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$

► This is a well-defined pdf for a continuous random variable. The **conditional cdf** is

$$F_{Y|X}(y|x) = \int_{-\infty}^{y} f_{Y|X}(v|x) dv.$$

Independence

The random variables X, Y are **independent** if

$$F_{Y|X}(y|x) = F_Y(y)$$

Equivalently, if

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

Also can be defined in terms of the densities. X, Y are independent if $f_{Y|X}(y|x) = f_Y(y)$ or equivalently, if $f_{X,Y}(x,y) = f_X(x)f_Y(y)$.

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

Transformations of random variables

Let X be a random variable with cdf F_X . Define the random variable Y = h(X), where h is a one-to-one function whose inverse h^{-1} exists. What is the distribution of Y?

Suppose that X is discrete with values x_1, \ldots, x_n . Y is also discrete with the values

$$y_i = h(x_i), \text{ for } i = 1, ..., n.$$

The pmf of *Y* is given by

$$P(Y = y_i) = P(X = h^{-1}(x_i))$$

 $f_Y(y) = f_X(h^{-1}(y_i))$

Transformations of random variables

Suppose that X is continuous. Suppose h is increasing

$$F_Y(y) = P(Y \le y)$$

= $P(X \le h^{-1}(y)) = F_X(h^{-1}(y))$

So,

$$f_Y(y) = \frac{dF_Y(y)}{dy}$$
$$= f_X(h^{-1}(y))\frac{dh^{-1}(y)}{dy}$$

Suppose *h* is decreasing.

$$f_Y(y) = -f_X(h^{-1}(y)) \frac{dh^{-1}(y)}{dy}$$

Combining these two cases, we have that, in general,

$$f_Y(y) = f_x(h^{-1}(y)) |rac{dh^{-1}(y)}{dy}$$

Example

$X \sim U[0,1]$ and $Y = X^2$. What is the density of Y?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

Expectations Definition

Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition: Discrete Random Variables

X is a discrete random variable. Its **expectation** or **expected value** is defined as

$$E[X] = \sum_{x} x f_X(x).$$

if $\sum_{x} |x| f_X(x) < \infty$. Otherwise, its expectation does not exist. Let $g : \mathbb{R} \to \mathbb{R}$. Then,

$$E[g(X)] = \sum_{x} g(x) f_X(x)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition: Continuous Random Variables

Suppose X is a continuous random variable. Its expectation is defined as

$$E[X] = \int_{\mathcal{S}_X} x f_X(x) dx$$

if $\int_{S_X} |x| f_X(x) dx < \infty$. Otherwise, its expectation does not exist. Let $g : \mathbb{R} \to \mathbb{R}$. Then,

$$E[g(X)] = \int_{S_X} g(x) f_X(x) dx$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

Expectations

Definition

Properties

Moment Generating Functions Random Vectors

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

Expectation is a linear operator

Suppose $a, b \in \mathbb{R}$ and $g_1(\cdot), g_2(\cdot)$ are real-valued functions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1.
$$E[a] = a$$
.
2. $E[ag_1(X)] = aE[g_1(X)]$.
3. $E[g_1(X) + g_2(X)] = E[g_1(X)] + E[g_2(X)]$.

Multivariate Expectations

X, Y are random variables with joint density $f_{X,Y}(x,y)$. Let $g(x,y) : \mathbb{R}^2 \to \mathbb{R}$.

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx.$$

By linearity of the expectation, for $a, b \in \mathbb{R}$,

$$E[aX + bY] = aE[X] + bE[Y].$$

If X, Y are independent, then for any functions $h_1(\cdot), h_2(\cdot)$,

$$E[h_1(X)h_2(Y)] = E[h_1(X)]E[h_2(Y)].$$

Indicator Functions

An **indicator function** 1(A) is a function that is equal to one if condition A is true and zero otherwise.

• E.g. if X is a random variable, then

$$1(X \le x) = \begin{cases} 1 & \text{if } X \le x \\ 0 & \text{otherwise} \end{cases}$$

Note that (for the continuous case)

$$E[1(X \le x)] = \int_{-\infty}^{\infty} 1(X \le x) f_X(x) dx$$
$$= \int_{-\infty}^{x} f_X(x) dx$$
$$= F_X(x) = P(X \le x).$$

More generally, if $A_X \subseteq \mathbb{R}$, we have that

$$E[1(X \in A_X)] = P(X \in A_X)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

Expectations

Definition Properties

Moment Generating Functions

Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Moments

Consider a random variable X. The k-th moment of X is defined as $E[X^k]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The first moment of X is its **mean**, E[X].

The *k*-th centered moment of X is $E[(X - E[X])^k]$.

• he second centered moment of X is its variance, $V(X) = E[(X - E[X])^2].$

Moment Generating Function (MGF)

The **moment generating function** (MGF) of a random variable X is defined as

$$\mu_X(t) = E[e^{tX}] = \int e^{tx} f_X(x) dx.$$

The MGF of X allows us to easily compute all of the moments of a random variable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Moment Generating Function (MGF)

We have that

$$\mu'_X(t) = \int x e^{tx} f_X(x) dx, \quad \mu'_X(0) = \int x f_X(x) dx = E[X],$$

$$\mu''_X(t) = \int x^2 e^{tx} f_X(x) dx, \quad \mu''_X(0) = \int x^2 f_X(x) dx = E[X^2].$$

In general, we can show that

$$\mu_X^{(j)}(0)=E[X^j]$$
 for $j=1,2,\ldots$

The MGF of a random variable completely characterizes the distribution of a random variable. If X, Y are two random variables with the same MGF, then they have the same distribution.

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Covariance

X, Y are two random variables with joint density $f_{X,Y}(x,y)$. The **covariance** between X, Y is

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

The covariance is a linear operator

$$Cov(X, aY + bW) = aCov(X, Y) + bCov(X, W).$$

Moreover, suppose Z = aX + bY for $a, b \in \mathbb{R}$. Then,

$$V(Z) = a^2 V(X) + b^2 V(Y) + 2abCov(X, Y).$$

Moments for Random Vectors

X is an *n*-dimensional random vector with $X = (X_1, \ldots, X_n)$.

Its mean vector is

$$E[X] = \begin{pmatrix} E[X_1] \\ \vdots \\ E[X_n] \end{pmatrix}$$

Its covariance matrix is

$$V(X) = \Sigma$$

where Σ is an $n \times n$ matrix whose *ij*-th entry is $\Sigma_{ij} = Cov(X_i, X_j)$.

 Σ is a positive semi-definite matrix. Why? $\alpha \in \mathbb{R}^n$ and $Y = \alpha^T X$. Then,

$$V(Y) = \alpha^T \Sigma \alpha \ge 0.$$

くしゃ (雪) (雪) (雪) (雪) (雪) (

This must hold for all $\alpha \in \mathbb{R}^n$.

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations

Iterated Expectations Interpretation

(X, Y) is a pair of random variables with a joint density $f_{X,Y}(x, y)$. The **conditional expectation** of Y given X = x is

$$E[Y|X=x] = \int_{S_Y} yf_{Y|X}(y|x)dy.$$

(日) (日) (日) (日) (日) (日) (日) (日)

Note that this is a function of x. It is sometimes denote $\mu_Y(x)$ and called the **regression function**.

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations

Interpretation

Law of Iterated Expectations:

$$E_Y[Y] = E_X E_{Y|X}[Y],$$

- ► E_X denotes the expectation taken with respect to the marginal density of X.
- ► E_{Y|X} denotes the expectation taken with respect to the conditional density of Y given X.

Proof

$$E_X E_{Y|X}[Y] = \int \left(\int y f_{Y|X}(y) dy \right) f_X(x) dx$$

= $\int \int y f_{Y|X}(y) f_X(x) dy dx$
= $\int y \left(\int f_{X,Y}(x,y) dx \right) dy$
= $\int y f_Y(y) dy = E[Y]$

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

Optimal Forecasting

What are some ways to interpret the conditional expectation?

The conditional expectation is the solution to an *optimal* forecasting problem.

Suppose you wish to forecast the value of a random variable Y. Pick $h \in \mathbb{R}$ that minimizes the expected mean-square error

$$E[(Y-h)^2] = \int (y-h)^2 f_Y(y) dy.$$

The first-order condition is

$$\int y f_Y(y) dy = \int h f_Y(y) dy \implies h^* = E[Y].$$

Optimal Forecasting

Suppose that we observe another random variable X and see that X = x. We wish to forecast Y as a function of x. We minimize

$$E[(Y-h(X))^2].$$

<u>Claim 1</u>: We can write any function of X as

$$h(x) = \mu_Y(x) + g(x)$$

Why?

Choosing h is equivalent to choosing g. Then write

$$(Y - h(X))^2 = (Y - \mu_Y(X))^2 - 2g(X)(Y - \mu_Y(X)) + g(X)^2.$$

Optimal Forecasting

Claim 2:

$$E_{Y|X}[g(X)(Y-\mu_Y(x))]=0$$

Why?

So,

$$E[(Y - h(X))^{2}] = E[(Y - \mu_{Y}(X))^{2} + g(X)^{2}]$$

. and $g^*(x) = 0$ with

$$h^*(x) = \mu_Y(x).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

L^2 Projection

We can also interpret the conditional expectation of Y given X as the orthogonal projection of Y onto the space of functions of the random variable X i.e. L^2 space.

▶ This is the focus of the first several lectures of Econ 2120.

Provides a unifying perspective on much of econometrics and this is really the through line of Econ 2120.

Random Variables

Defining Random Variables Cumulative Distribution Functions Joint Distributions Conditioning and Independence Transformations of Random Variables

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Expectations

Definition Properties Moment Generating Functions Random Vectors

Conditional Expectations

Conditional Expectations Iterated Expectations Interpretation

Jensen's Inequality: Let $h(\cdot)$ be a convex function and X be a random variable. Then,

 $E[h(X)] \geq h(E[X]).$

If $h(\cdot)$ is concave, then

 $E[h(X)] \leq h(E[X]).$

Jensen's Inequality Proof

If h is a convex function, then $\forall x_0$, there exists some constant a such that

$$h(x) \ge h(x_0) + a(x - x_0) \quad \forall x$$

Set $x_0 = E[x]$. It follows that

$$h(X) \ge h(E[X]) + a(x - E[X])$$

holds for all x. Taking expectations, we have that

 $E[h(X)] \geq h(E[X]).$

Jensen's Inequality Picture Proof

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

Markov's Inequality: Suppose X is a random variable with $X \ge 0$ with $E[X] < \infty$. Then, for all M > 0,

$$P(X \ge M) \le \frac{E[X]}{M}.$$

•
$$X \ge 0 \iff P(\{\omega : X(\omega) < 0\}) = 0.$$

Application: Suppose that household income is non-negative. No more than 1/5 of households can have an income that is greater than five times the average household income.

Markov's Inequality Proof

Note

$$X \geq M1(X \geq M).$$

Taking expectations of both sides, we have that

$$E[X] \ge ME[1(X \ge M)] = MP(X \ge M)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

and re-arrange.

Markov's Inequality Picture Proof

Figure: Proof of Markov's inequality

イロト 不良下 イヨト イヨト

æ

Chebyshev's Inequality

Chebyshev's Inequality: Suppose that X is a random variable such that $\sigma^2 = Var[X] < \infty$. Then, for all M > 0,

$$P(|X - E[X]| > M) \le \frac{\sigma^2}{M^2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Chebyshev's Inequality Proof

Let $Y = (X - E[X])^2$. Apply Markov's inequality to Y and the cutoff M^2 to get

$$P(Y \ge M^2) \le \frac{E[Y]}{M^2}.$$

Rewrite to get that

$$P(|X - E[X]| \ge M) \le \frac{\sigma^2}{M^2}$$