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Random Variables: Borel σ-algebra

Going to present a measure-theoretic definition of random
variables.

First building block: Borel σ-algebra
I Ω = R, A = collection of all open intervals. The “smallest”
σ-algebra containing all open sets is the Borel σ-algebra,
denoted as B.

I Rigorous definition: B = collection of all Borel sets - any set in
R that can be formed by countable union, countable
intersection and relative complement.

I B contains all closed intervals. Why?

I Higher-dimensions: B = smallest σ-algebra containing all
open balls.



Random Variables: Measurable functions

Second building block

Definition: Let (Ω,A, µ) and (Ω′,A′, µ′) be two measure spaces.
Let f : Ω→ Ω′ be a function. f is measurable if and only if
f −1(A′) ∈ A for all A′ ∈ A′.
What in the world...

I For a given set of values in the function’s range, we can
“measure” the subset of the function’s domain upon which
these values occur.

I µ(f −1(A′)) is well-defined.



Random variables: Measurable functions

Important case:

(Ω′,A′, µ′) = (R,B, λ).

λ is the lebesgue measure on R. In this case, f will be real-valued.

f is µ-measurable iff

f −1((−∞, c)) = {ω ∈ Ω : f (ω) < c} ∈ A ∀c ∈ R.



Random Variables

Consider a probability space (Ω,A,P). A random variable is
simply a measurable function from the sample space Ω to the
real-line.

Formal definition: Let (Ω,A,P) be a probability space and
X : Ω→ R is a function. X is a random variable if and only if X
is P-measurable. That is, X−1(B) ∈ A for all B ∈ B where B is
the Borel σ-algebra.

Whew... done with that now.
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Cumulative Distribution Function

Let X be a random variable. The cumulative distribution
function (cdf) F : R→ [0, 1] of X is defined as

FX (x) = P(X−1(x)) = P({ω ∈ Ω : X (ω) ≤ x}).

I We write
FX (x) = P(X ≤ x).

I (R,B,FX ) form a probability space.



Cumulative Distribution Function

The cumulative distribution function FX has the following
properties:

1. For x1 ≤ x2,

FX (x2)− FX (x1) = P(x1 < X < x2).

2. limx→−∞ FX (x) = 0, limx→∞ FX (x) = 1.

3. FX (x) is non-decreasing.

4. FX (x) is right-continuous: limx→x+0
FX (x) = FX (x0).



Cumulative Distribution Function

The quantiles of a random variable X are given by the inverse of
its cumulative distribution function.

I The quantile function is

Q(u) = inf{x : FX (x) ≥ u}.

If FX is invertible, then

Q(u) = F−1X (u).

For any function F that satisfies the properties of a cdf listed
above, we can construct a random variable whose cdf is F.

I U ∼ U[0, 1] and FU(u) = u for all u ∈ [0, 1]. Define

Y = Q(U),

where Q is the quantile function associated with F . When F
is invertible, we have

FY (y) = P(F−1(U) ≤ y) = P(U ≤ F (y)) = F (y)



Discrete Random Variables

If FX is constant except at a countable number of points (i.e. FX
is a step function), then we say that X is a discrete random
variable.

pi = P(X = xi ) = FX (xi )− lim
x→x−i

FX (x)

Use this to define the probability mass function (pmf) of X .

fX (x) =

{
pi if x = xi , i = 1, 2, . . .

0 otherwise

We can write

P(x1 < X ≤ x2) =
∑

x1<x≤x2

fX (x).



Continuous Random Variables

If FX can be written as

FX (x) =

∫ x

−∞
fX (t)dt

where fX (x) satisfies

fX (x) ≥ 0 ∀x ∈ R∫ ∞
−∞

fX (t)dt = 1,

we say that X is a continuous random variable.

At the points where fX is continuous,

fX (x) =
dFX (x)

dx
.

We call fX (x) the probability density function (pdf) of X . We
call

SX = {x : fX (x) > 0}
the support of X .



Continuous Random Variables

Note that for x2 ≥ x1,

P(x1 < X ≤ x2) = FX (x2)− FX (x1)

=

∫ x2

x1

fX (t)dt

and that
P(X = x) = 0

for a continuous random variable.
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Joint Distributions

Let X ,Y be two scalar random variables. A random vector
(X ,Y ) is a measurable mapping from Ω to R2.

The joint cumulative distribution function of X ,Y is

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y)

= P({ω : X (ω) ≤ x} ∩ {ω : Y (ω) ≤ y})

(X ,Y ) is a discrete random vector if

FX ,Y (x , y) =
∑
u≤x

∑
v≤y

fX ,Y (u, v),

where fX ,Y (x , y) = P(X = x ,Y = y) is the joint probability
mass function of (X ,Y ).



Joint Distributions

(X ,Y ) is a continuous random vector if

FX ,Y (x , y) =

∫ x

−∞

∫ y

−∞
fX ,Y (u, v)dvdu,

where fX ,Y (x , y) is the joint probability density function of
(X ,Y ). As before,

fX ,Y (x , y) =
∂2FX ,Y (x , y)

∂x∂y

at the points of continuity of FX ,Y .



Joint to Marginal

From the joint cdf of (X ,Y ), we can recover the marginal cdfs.

FX (x) = P(X ≤ x)

= P(X ≤ x ,Y ≤ ∞)

= lim
y→∞

FX ,Y (x , y).

We can also recover the marginal pdfs from the joint pdf:

fX (x) =
∑
y

fX ,Y (x , y) if discrete

and

fX (x) =

∫
Sy

fX ,Y (x , y)dy if continuous.
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Conditioning & Random Variables: Discrete case

Consider x with fX (x) > 0. The conditional pmf of Y given
X = x is

fY |X (y |x) =
fX ,Y (x , y)

fX (x)
.

This satisfies

fY |X (y |x) ≥ 0∑
y

fY |X (y |x) = 1.

I fY |X (y |x) is a well-defined pmf.

The conditional cdf of Y given X = x is

FY |X (y |x) = P(Y ≤ y |X = x) =
∑
v≤y

fY |X (v |x)

.



Conditioning & Random Variables: Continuous case

Consider x with fX (x) > 0, the conditional pdf of Y given X = x
is

fY |X (y |x) =
fX ,Y (x , y)

fX (x)
.

I This is a well-defined pdf for a continuous random variable.

The conditional cdf is

FY |X (y |x) =

∫ y

−∞
fY |X (v |x)dv .



Independence

The random variables X ,Y are independent if

FY |X (y |x) = FY (y)

Equivalently, if
FX ,Y (x , y) = FX (x)FY (y)

.

Also can be defined in terms of the densities. X ,Y are independent
if fY |X (y |x) = fY (y) or equivalently, if fX ,Y (x , y) = fX (x)fY (y).
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Transformations of random variables

Let X be a random variable with cdf FX . Define the random
variable Y = h(X ), where h is a one-to-one function whose inverse
h−1 exists. What is the distribution of Y?

Suppose that X is discrete with values x1, . . . , xn. Y is also
discrete with the values

yi = h(xi ), for i = 1, . . . , n.

The pmf of Y is given by

P(Y = yi ) = P(X = h−1(xi ))

fY (y) = fX (h−1(yi ))



Transformations of random variables

Suppose that X is continuous. Suppose h is increasing

FY (y) = P(Y ≤ y)

= P(X ≤ h−1(y)) = FX (h−1(y)).

So,

fY (y) =
dFY (y)

dy

= fX (h−1(y))
dh−1(y)

dy

Suppose h is decreasing.

fY (y) = −fX (h−1(y))
dh−1(y)

dy

Combining these two cases, we have that, in general,

fY (y) = fx(h−1(y))|dh
−1(y)

dy
|



Example

X ∼ U[0, 1] and Y = X 2. What is the density of Y ?
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Definition: Discrete Random Variables

X is a discrete random variable. Its expectation or expected
value is defined as

E [X ] =
∑
x

xfX (x).

if
∑

x |x |fX (x) <∞. Otherwise, its expectation does not exist.

Let g : R→ R. Then,

E [g(X )] =
∑
x

g(x)fX (x)



Definition: Continuous Random Variables

Suppose X is a continuous random variable. Its expectation is
defined as

E [X ] =

∫
SX

xfX (x)dx

if
∫
SX
|x |fX (x)dx <∞. Otherwise, its expectation does not exist.

Let g : R→ R. Then,

E [g(X )] =

∫
SX

g(x)fX (x)dx
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Expectation is a linear operator

Suppose a, b ∈ R and g1(·), g2(·) are real-valued functions.

1. E [a] = a.

2. E [ag1(X )] = aE [g1(X )].

3. E [g1(X ) + g2(X )] = E [g1(X )] + E [g2(X )].



Multivariate Expectations

X ,Y are random variables with joint density fX ,Y (x , y). Let
g(x , y) : R2 → R.

E [g(X ,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x , y)fX ,Y (x , y)dydx .

By linearity of the expectation, for a, b ∈ R,

E [aX + bY ] = aE [X ] + bE [Y ].

If X ,Y are independent, then for any functions h1(·), h2(·),

E [h1(X )h2(Y )] = E [h1(X )]E [h2(Y )].



Indicator Functions

An indicator function 1(A) is a function that is equal to one if
condition A is true and zero otherwise.

I E.g. if X is a random variable, then

1(X ≤ x) =

{
1 if X ≤ x

0 otherwise

Note that (for the continuous case)

E [1(X ≤ x)] =

∫ ∞
−∞

1(X ≤ x)fX (x)dx

=

∫ x

−∞
fX (x)dx

= FX (x) = P(X ≤ x).

More generally, if AX ⊆ R, we have that

E [1(X ∈ AX )] = P(X ∈ AX )
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Moments

Consider a random variable X . The k-th moment of X is defined
as E [X k ].

I The first moment of X is its mean, E [X ].

The k-th centered moment of X is E [(X − E [X ])k ].

I he second centered moment of X is its variance,
V (X ) = E [(X − E [X ])2].



Moment Generating Function (MGF)

The moment generating function (MGF) of a random variable
X is defined as

µX (t) = E [etX ] =

∫
etx fX (x)dx .

The MGF of X allows us to easily compute all of the moments of a
random variable.



Moment Generating Function (MGF)

We have that

µ′X (t) =

∫
xetx fX (x)dx , µ′X (0) =

∫
xfX (x)dx = E [X ],

µ′′X (t) =

∫
x2etx fX (x)dx , µ′′X (0) =

∫
x2fX (x)dx = E [X 2].

In general, we can show that

µ
(j)
X (0) = E [X j ] for j = 1, 2, . . .

The MGF of a random variable completely characterizes the
distribution of a random variable. If X ,Y are two random variables
with the same MGF, then they have the same distribution.
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Covariance

X ,Y are two random variables with joint density fX ,Y (x , y). The
covariance between X ,Y is

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]

= E [XY ]− E [X ]E [Y ]

The covariance is a linear operator

Cov(X , aY + bW ) = aCov(X ,Y ) + bCov(X ,W ).

Moreover, suppose Z = aX + bY for a, b ∈ R. Then,

V (Z ) = a2V (X ) + b2V (Y ) + 2abCov(X ,Y ).



Moments for Random Vectors

X is an n-dimensional random vector with X = (X1, . . . ,Xn).

I Its mean vector is

E [X ] =

E [X1]
...

E [Xn]


I Its covariance matrix is

V (X ) = Σ

where Σ is an n × n matrix whose ij-th entry is
Σij = Cov(Xi ,Xj).

Σ is a positive semi-definite matrix. Why? α ∈ Rn and Y = αTX .
Then,

V (Y ) = αTΣα ≥ 0.

This must hold for all α ∈ Rn.
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Conditional Expectations

(X ,Y ) is a pair of random variables with a joint density fX ,Y (x , y).
The conditional expectation of Y given X = x is

E [Y |X = x ] =

∫
SY

yfY |X (y |x)dy .

Note that this is a function of x . It is sometimes denote µY (x)
and called the regression function.
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Iterated Expectations

Law of Iterated Expectations:

EY [Y ] = EXEY |X [Y ],

I EX denotes the expectation taken with respect to the
marginal density of X .

I EY |X denotes the expectation taken with respect to the
conditional density of Y given X .



Proof

EXEY |X [Y ] =

∫ (∫
yfY |X (y)dy

)
fX (x)dx

=

∫ ∫
yfY |X (y)fX (x)dydx

=

∫
y
(∫

fX ,Y (x , y)dx
)
dy

=

∫
yfY (y)dy = E [Y ]
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Optimal Forecasting

What are some ways to interpret the conditional expectation?

I The conditional expectation is the solution to an optimal
forecasting problem.

Suppose you wish to forecast the value of a random variable Y .
Pick h ∈ R that minimizes the expected mean-square error

E [(Y − h)2] =

∫
(y − h)2fY (y)dy .

The first-order condition is∫
yfY (y)dy =

∫
hfY (y)dy =⇒ h∗ = E [Y ].



Optimal Forecasting

Suppose that we observe another random variable X and see that
X = x . We wish to forecast Y as a function of x . We minimize

E [(Y − h(X ))2].

Claim 1: We can write any function of X as

h(x) = µY (x) + g(x)

Why?

Choosing h is equivalent to choosing g . Then write

(Y − h(X ))2 = (Y − µY (X ))2 − 2g(X )(Y − µY (x)) + g(X )2.



Optimal Forecasting

Claim 2:
EY |X [g(X )(Y − µY (x))] = 0

Why?

So,
E [(Y − h(X ))2] = E [(Y − µY (X ))2 + g(X )2]

. and g∗(x) = 0 with

h∗(x) = µY (x).



L2 Projection

We can also interpret the conditional expectation of Y given X as
the orthogonal projection of Y onto the space of functions of the
random variable X i.e. L2 space.

I This is the focus of the first several lectures of Econ 2120.

Provides a unifying perspective on much of econometrics and this
is really the through line of Econ 2120.
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Jensen’s Inequality

Jensen’s Inequality: Let h(·) be a convex function and X be a
random variable. Then,

E [h(X )] ≥ h(E [X ]).

If h(·) is concave, then

E [h(X )] ≤ h(E [X ]).



Jensen’s Inequality Proof

If h· is a convex function, then ∀x0, there exists some constant a
such that

h(x) ≥ h(x0) + a(x − x0) ∀x

Set x0 = E [x ]. It follows that

h(X ) ≥ h(E [X ]) + a(x − E [X ])

holds for all x . Taking expectations, we have that

E [h(X )] ≥ h(E [X ]).



Jensen’s Inequality Picture Proof



Markov’s Inequality

Markov’s Inequality: Suppose X is a random variable with X ≥ 0
with E [X ] <∞. Then, for all M > 0,

P(X ≥ M) ≤ E [X ]

M
.

I X ≥ 0 ⇐⇒ P({ω : X (ω) < 0}) = 0.

Application: Suppose that household income is non-negative. No
more than 1/5 of households can have an income that is greater
than five times the average household income.



Markov’s Inequality Proof

Note
X ≥ M1(X ≥ M).

Taking expectations of both sides, we have that

E [X ] ≥ ME [1(X ≥ M)] = MP(X ≥ M)

and re-arrange.



Markov’s Inequality Picture Proof



Chebyshev’s Inequality

Chebyshev’s Inequality: Suppose that X is a random variable
such that σ2 = Var [X ] <∞. Then, for all M > 0,

P(|X − E [X ]| > M) ≤ σ2

M2
.



Chebyshev’s Inequality Proof

Let Y = (X − E [X ])2. Apply Markov’s inequality to Y and the
cutoff M2 to get

P(Y ≥ M2) ≤ E [Y ]

M2
.

Rewrite to get that

P(|X − E [X ]| ≥ M) ≤ σ2

M2
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