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Useful Univariate Distributions

Not going to review them all in math camp but will refresh the
most useful distributions. See the notes for a full review.



Bernoulli distribution

X is a discrete random variable that can only take on two values:
0, 1. We write

fX (x) = px(1− p)1−x .

Note that

E [X k ] = p, k ≥ 1

V (X ) = p(1− p),

µX (t) = (1− p) + pet .

X has a Bernoulli distribution.



Binomial distribution

Xi for i = 1, . . . , n are i.i.d Bernoulli random variables with
P(Xi = 1) = p. Define

X =
n∑

i=1

Xi .

X follows a binomial distribution with parameters n and p. Takes
values 1, 2, . . . , n and

fX (x) =

(
n

x

)
px(1− p)n−x

with
E [X ] = np, V (X ) = np(1− p).



Uniform distribution

X is a continuous random variable with

fX (x) =
1

b − a

for x ∈ [a, b] and 0 otherwise. X is uniformly distributed on [a,
b] and write X ∼ U[a, b].

E [X ] =
1

2
(a + b), V (X ) =

1

12
(b − a)2.



Normal distribution

Suppose Z is continuously distributed with support over R. X
follows a standard normal distribution if

fZ (z) =
1√
2π

e−
1
2
z2

Denote it Z ∼ N(0, 1) where E [Z ] = 0,V (Z ) = 1.

X ∼ N(µ, σ2) if

fX (x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

with E [X ] = µ,V (X ) = σ2 and X = µ+ σZ , where Z ∼ N(0, 1).



Normal distribution

The MGF of a standard normal random variable is incredibly
useful. If Z ∼ N(0, 1), then

MZ (t) = e
1
2
t2
.

If X ∼ N(µ, σ2), then

MX (t) = eµt+ 1
2
σ2t2

Why?



Chi-squared Distribution

Let Zi ∼ N(0, 1) i.i.d. for i = 1, . . . , n. Let

X =
n∑

i=1

Z 2
i .

X is a chi-squared random variable with n degrees of freedom
and write X ∼ χ2

n. Note

E [X ] = n, V (X ) = 2n

.
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The i.i.d. case

Z = (Z1, . . . ,Zm)′, where Zi ∼ N(0, 1) i.i.d. The joint density of Z
is

fZ (z) = Πm
i=1

1√
2π

e−
1
2
z2
i

= (2π)n/2 exp(−1

2
z ′z)

Moreover, E [Z ] = 0 and V (Z ) = Im.

The MGF of Z is

MZ (t) = E [et
′Z ]

= Πm
i=1E [etizi ] = e

1
2
t′t

This is a useful reference point as we develop some results about
the multivariate normal distribution.



Definition

The m-dimensional random vector X follows a m-dimensional
multivariate normal distribution if and only if

aTX

is normally distributed for all a ∈ Rm.

We write X ∼ Nm(µ,Σ), where E [X ] = µ is the m-dimensional
mean vector and V (X ) = Σ is the m ×m dimensional covariance
matrix.

What is its joint density? We use the following results to get there.



Density of Multivariate Normal

Result 1: Suppose X ∼ N(µ,Σ). Then,

MX (t) = et
′µ+ 1

2
t′Σt .

Proof: t ′X ∼ N(t ′µ, t ′Σt). Therefore,

MX (t) = E [et
′X ]

= E [eY ], Y ∼ N(t ′µ, t ′Σt)

= MY (1)



Density of Multivariate Normal

Result 2: X ∼ Nm(µ,Σ) and

Y = AX + b,

where A ∈ Rn×m, b ∈ Rn. Then,

Y ∼ Nn(Aµ+ b,AΣA′).

Proof: For t ∈ Rn,

MY (t) = E [et
′Y ]

= E [et
′(AX+b)]

= et
′bE [e(A′t)′X ]

= et
′be(A′t)′µ+ 1

2
(A′t)′Σ(A′t)′

= et
′(Aµ+b)+ 1

2
t′(AΣA′)t



Density of Multivariate Normal

We are now ready to derive the density of X ∼ N(µ,Σ).

Suppose X ∼ N(µ,Σ) and Σ has full column rank. Then, the
density of X is given by

fX (x) = (2π)−m/2|Σ|−1/2 exp(−1

2
(x − µ)′Σ−1(x − µ))



Density of Multivariate Normal: Proof Sketch

Z is a m-dimensional random vector of i.i.d. standard normal
random variables. We have

MZ (t) = e
1
2
t′t

. so, Z ∼ Nm(0, Im) with

fZ (z) = (2π)−m/2e−
1
2
z ′z

Let X = µ+ Σ1/2Z . Using results, X ∼ Nm(µ,Σ). From the
multivariate transformation of random variables formula, we can
get

fX (x) = |Σ|−1/2fZ (Σ−1/2(x − µ))



Properties of Multivariate Normal Distribution

Next, we provide a list of a set of useful properties of the
multivariate normal distribution. No need to memorize them but
here so you’re familiar with them.

I Results stated without proof.



Property #1: Concatenating independent multivariate
normals

Property #1: If X1 ∼ Nm(µ1,Σ1),X2 ∼ Nn(µ2,Σ2) and X1 ⊥ X2,
then

X = (X ′1,X
′
2)′ ∼ Nm+n(µ,Σ)

where

µ =

(
µ1

µ2

)
, Σ =

(
Σ1 0
0 Σ2

)



Property #2: Subvectors are multivariate normals

Property #2: Let X ∼ Nm(µ,Σ). Let X1 be a p-dimensional
sub-vector of X with p < m. Write

X =

(
X1

X2

)
and

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then, X1 ∼ Np(µ1,Σ11).



Property #3: Cov(X1,X2) = 0 ⇐⇒ X1 ⊥ X2

Property #3: Let X ∼ Nm(µ,Σ). Partition X into two
sub-vectors. That is, write

X =

(
X1

X2

)
and

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then, X1 ⊥ X2 if and only if Σ12 = Σ21 = 0.



Property #4

Property #4: Let X ∼ Nm(µ,Σ). If

Y = AX + b, V = CX + d ,

where A,C ∈ Rn×m and b, d ∈ Rn, then

Cov(Y ,V ) = AΣC ′.

Moreover, Y ⊥ V if and only if

AΣC ′ = 0.



Property #5: Linear conditional expectations

Property #5: Let X ∼ Nm(µ,Σ) with X = (X ′1,X
′
2)′,

µ = (µ′1, µ
′
2)′ and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Provided that Σ22 has full rank, the conditional distribution of X1

given X2 = x2 is

X1|X2 = x2 ∼ N(µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 Σ21).



Property #5: Linear Conditional Expectations

What’s the intuition of this?

E [X1|X2 = x2] = µ1 + Σ12Σ−1
22 (x2 − µ2).

In 1-d, it becomes

E [X1|X2 = x2] = E [X1] +
Cov(X1,X2)

V (X2)
(x2 − E [X2])

Next let’s relabel Y = X1,X = X2 and re-arrange

E [Y |X = x ] = (E [Y ]− Cov(Y ,X )

V (X )
E [X ]) +

Cov(Y ,X )

V (X )
x .

This is simply the linear regression formula!

If (X ,Y ) are jointly normal, linear regression exactly returns the
conditional expectation function.



Property #6: Quadratic Form of a Multivariate Normal

A quadratic form is a quantity of the form y ′Ay , where A is a
symmetric matrix.

Suppose that Zi ∼ N(0, 1) i.i.d. for i = 1, . . . , n. We already know
that

∑n
i=1 Z

2
i = Z ′Z ∼ χ2

n.

Property #6:If X ∼ Nm(µ,Σ) and Σ has full rank, then

(X − µ)′Σ−1(X − µ) ∼ χ2
m.

I Why? Let Z = Σ−1/2(X − µ) ∼ Nm(0, Im). Then, Z ′Z ∼ χ2
m.
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