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DISCLAIMERS:

1. There is absolutely no expectation for you to read these notes prior to
math camp. Maximize utility as you see fit.

2. This is intended to provide a brief refresher on some concepts
and preview some material that will be covered in the first year
econometrics sequence. If some of the material is unfamiliar, do not
worry.

3. These notes contain more content than we will have time to cover
during math camp. This is intentional. Hopefully these notes can be
a useful reference material for you throughout the year.
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Principles of Probability

A random experiment is an experiment whose outcome cannot
be predicted beforehand. How do we model a random experiment?
There are three key elements: The sample space, the events and the
probability measure. Each of these are described in turn.2 2 There are going to be a lot of defi-

nitions that seem overly complex to
describe something that seems fairly
simple... Bear with me and welcome to
a Ph.D. in economics.

Definition 0.1. The sample space Ω is the set of all possible outcomes of a
random experiment. We denote an outcome as ω ∈ Ω.

Definition 0.2. An event A is a subset of the sample space, A ⊆ Ω. Let A
denote the family of all events.

Example 0.1. Suppose we survey 10 randomly selected people on their
employment status and count how many are unemployed.

Ω = {0, 1, 2, . . . , 10}

A is the event that more than 30% of those surveyed are unemployed.

A = {4, 5, 6, . . . , 10}

Example 0.2. Suppose we ask a random person what is their income.

Ω = R+

A is the event that the person earns between $30, 000 and $40, 000.

A = [30, 000, 40, 000]

We place additional restrictions on A. These impose sufficient
structure that will allow us to consistently define the probabilities of
events.

Definition 0.3. Let Ω be a set and A ⊆ 2Ω be a family of its subsets. F is
a σ-algebra if and only if it satisfies the following

1. S ∈ F .

2. F is closed under complements: A ∈ F implies that AC = S− A ∈ F .

3. F is closed under countable union: If An ∈ F for n = 1, 2, . . ., then
∪n An ∈ F .

Remark 0.1. Properties 1 and 2 of a σ-algebra implies that ∅ ∈ F . Proper-
ties 2 and 3 imply that F is closed under countable intersection by DeMor-
gan’s Law. That is, if An ∈ F for n = 1, 2, . . ., then ∩n An ∈ F .

We assume that A, the family of all events on Ω, is a σ-algebra. We
say that (Ω,A) is measurable space and that A ∈ A is measurable with
respect to the σ-algebra A.



harvard economics math camp 2018: econometrics, probability review 4

Definition 0.4. Let (Ω,A) be a measurable space. A measure is a func-
tion, µ : A → R such that

1. µ(∅) = 0.

2. µ(A) ≥ 0 for all A ∈ A.

3. If An ∈ A for n = 1, 2, . . . with Ai ∩ Aj = ∅ for i 6= j, then

P(Un An) = ∑
n

P(An)

If µ(Ω) < ∞, we call µ a finite measure, If µ(Ω) = 1, we call µ a
probability measure. We denote a probability measure as P : A → [0, 1].

Definition 0.5. A triple (Ω,A, µ) where Ω is a set, A is a σ-algebra and
µ is a measure on A is a measure space. If µ is a probability measure, it is
probability space.

We’ve now defined all components needed to model a random
experiments. A random experiment is characterized by its probability
space, (Ω,A, P). With the definition of a probability space that we
laid out above, we can prove all of the usual probability facts.

Proposition 0.1. Consider a probability space (Ω,A, P). The following
hold:

1. For all A ∈ A, P(AC) = 1− P(A).

2. P(Ω) = 1.

3. If A1, A2 ∈ A with A1 ⊆ A2, then P(A1) ≤ P(A2).

4. For all A ∈ A, 0 ≤ P(A) ≤ P(1).

5. If A1, A2 ∈ A, then

P(A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2)

Exercise 0.1. Prove these properties from the definition of a probability
space.

Conditional Probability

Conditional probability gives us a way to model the outcome of a
random experiment conditional on some partial information. For
instance, given a random experiment and the information that event
B has occurred, what is the probability that the outcome also belongs
to event A? To do so, we define a new probability measure on Ω.
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Definition 0.6. Let A, B ∈ A with P(B) > 0. The conditional probabil-
ity of A given B is

P(A|B) = P(A ∩ B)
P(B)

P(A|B) is a probability measure.

Remark 0.2. We can think about P(A|B) as part of a new probability space
with Ω = B and P(S) = P(S|B) for S ⊆ B.

Remark 0.3. Because the conditional probability is a probability measure,
all of the usual properties of probability measures in Proposition 0.1 apply.

The definition of conditional probability implies the following
useful formula. We have that

P(A ∩ B) = P(A|B)P(B) (1)

We next list several important results about conditional probabilities.

Theorem 0.1. The multiplication rule

P(∩n
i=1 Ai) = P(A1)P(A2|A1)P(A3|A2 ∩ A1) . . . P(An| ∩n−1

i=1 Ai)

Proof. This follows via repeated application of the definition of con-
ditional probability.

Theorem 0.2. Law of total probability
Consider K disjoint events Ck that partition Ω. That is, Ci ∩ Cj = ∅ for

all i 6= j and ∪K
i=1Ci = Ω. Let C be some event.

P(C) =
K

∑
i=1

P(C|Ci)P(Ci)

Proof. We have that

C = C ∩Ω

= C ∩ (∪K
i=1Ci)

= (C ∩ C1) ∪ . . . ∪ (C ∩ CK)

It follows

P(C) =
k

∑
i=1

P(C ∩ Ci)

and the result follows from the definition of conditional probability.

Theorem 0.3. Bayes’ Rule

P(B|A) =
P(A|B)P(B)

P(A|B)P(B) + P(A|BC)P(BC)
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Exercise 0.2. Prove Bayes’ Rule from the results presented.

Example 0.3. Suppose you survey 2 randomly selected individuals. What is
the probability that both are female given that at least one is female? Assume
that all outcomes are equally likely.

Solution. The sample space is Ω = {MM, MF, FM, FF}. The condi-
tioning event is B = {MF, FM, FF} and A = {FF}. Therefore,

P(A|B) = P({FF})
P({MF, FM, FF}) = 1/3

�

As mentioned, we use conditioning to describe the partial informa-
tion that an event B gives about another event A. What if B provides
no information about A?

Definition 0.7. Two events A, B are independent if

P(A|B) = P(A)

Equivalently, they are independent if

P(B|A) = P(B)

or
P(A ∩ B) = P(A)P(B)

Remark 0.4. If events A, B are independent, then so are AC, B, A, BC and
AC, BC.

We can extend the definition of independence to collections of
events.

Definition 0.8. Let E1, . . . , En be events. E1, . . . , En are jointly indepen-
dent if for any i1, . . . , ik

P(Ei1 |Ei2 ∩ . . . ∩ Eik ) = Ei1

Moreover, since conditional probabilities are probability measures,
we can define independence with respect to a conditional probability.

Definition 0.9. Given an event C, events A, B are conditionally inde-
pendent if

P(A ∩ B|C) = P(A|C)P(B|C)

Equivalently, A, B are independent conditional on C if

P(A|B ∩ C) = P(A|C)
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Random Variables

Borel σ-algebra

Earlier in these notes, we defined a σ-algebra. This was a collection
of sets that satisfied some additional restrictions that helped us con-
sistently define the probability of each set. A particularly important
σ-algebra is called the Borel σ-algebra. This is a σ-algebra over the
real line.

Definition 0.10. Let Ω = R. Let A be the collection of all open intervals.
The smallest σ-algebra containing all open sets is the Borel σ-algebra. It is
typically denoted as B.

Note that the Borel σ-algebra contains all closed intervals as well
and could have been equivalently defined as the smallest σ-algebra
that contains all closed sets. Moreover, we can extend the Borel σ-
algebra to higher dimensions - it is the smallest σ-algebra that con-
tains the open balls. The Borel σ-algebra will be useful later on in this
section.

Measurable functions

A measurable function is a function that maps from one measure
space to another. Measurable functions are useful because for a given
set of values in the function’s range, we can measure the subset of the
function’s domain upon which these values occur.

Definition 0.11. Let (Ω,A, µ) and (Ω′,A′, µ′) be two measure spaces. Let
f : Ω → Ω′ be a function. f is measurable if and only if f−1(A′) ∈ A for
all A′ ∈ A′.

That is, µ′( f−1(A′)) is well-defined for a measurable function f . A
particularly useful case occurs when

(Ω′,A′, µ′) = (R,B, λ)

where λ is the lebesgue measure. That is, f is a real-valued function.
We say that f is µ-measurable if and only if

f−1((−∞, c)) = {ω ∈ Ω : f (ω) < c} ∈ A ∀c ∈ R

We could also state this definition in terms of >,≤ or ≥. With these
definitions, we are now ready to define a random variable

Random variables

Consider a probability space (Ω,A, P). A random variable is simply
a measurable function from the sample space Ω to the real-line.



harvard economics math camp 2018: econometrics, probability review 8

Definition 0.12. Let (Ω,A, P) be a probability space and X : Ω → R is a
function. X is a random variable if and only if X is P-measurable. That is,
X−1(B) ∈ A for all B ∈ B where B is the Borel σ-algebra.

Definition 0.13. Let X be a random variable. The cumulative distribu-
tion function (cdf) F : R→ [0, 1] of X is defined as

FX(x) = P(X−1(x)) = P({ω ∈ Ω : X(ω) ≤ x})

For simplicity, we often write

FX(x) = P(X ≤ x)

Note that (R, B, FX) form a probability space. The cumulative distribution
function FX has the following properties:

1. For x1 ≤ x2,

FX(x2)− FX(x1) = P(x1 < X < x2).

2. limx→−∞ FX(x) = 0, limx→∞ FX(x) = 1.

3. FX(x) is non-decreasing.

4. FX(x) is right-continuous: limx→x+0
FX(x) = FX(x0).

Remark 0.5. Quantiles The quantiles of a random variable X are given by
the inverse of its cumulative distribution function. Generally, the quantile
function is

Q(u) = inf{x : FX(x) ≥ u}.

If FX is invertible, then
Q(u) = F−1

X (u).

Remark 0.6. For any function F that satisfies the properties of a cdf listed
above, we can construct a random variable whose cdf is F. Let U be uni-
formly distributed on [0, 1]. That is, FU(u) = u for all u ∈ [0, 1]. Define
Y = Q(U), where Q is the quantile function associated with F. In the case,
where F is invertible, we have

FY(y) = P(F−1(U) ≤ y) = P(U ≤ F(y)) = F(y)

Discrete random variables

If FX is constant except at a countable number of points (i.e. FX is a
step function), then we say that X is a discrete random variable. The
size of the jump at xi

pi = FX(xi)− lim
x→x−i

FX(x)
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is the probability that X takes on the value xi. That is,

P(X = xi) = pi

The probability mass function (pmf) of X is defined as

fX(x) =

pi if x = xi, i = 1, 2, . . .

0 otherwise

It follows that we can write

P(x1 < X ≤ x2) = ∑
x1<x≤x2

fX(x).

Continuous random variables

If FX can be written as

FX(x) =
∫ x

−∞
fX(t)dt

where fX(x) satisfies

fX(x) ≥ 0 ∀x ∈ R∫ ∞

−∞
fX(t)dt = 1,

we say that X is a continuous random variable. By the fundamental
theorem of calculus, at the points where fX is continuous,

fX(x) =
dFX(x)

dx
.

We call fX(x) the probability density function (pdf) of X. We call

SX = {x : fX(x) > 0}

the support of X.
Note that for x2 ≥ x1,

P(x1 < X ≤ x2) = FX(x2)− FX(x1)

=
∫ x2

x1

fX(t)dt

and that
P(X = x) = 0

for a continuous random variable.

Remark 0.7. Do not interpret the pdf of a continuous random variable as
expressing a probability ( fX(x) 6= P(X = x)). The proper interpretation
is that fX(x) expresses the probability that X falls in some small interval
(x, x + ∆x). That is,

P(X ∈ (x, x + ∆x)) ≈ f (x)∆x
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Joint distributions

Let X, Y be two scalar random variables. A random vector (X, Y) is a
mapping from Ω to R2.3 The joint cumulative distribution function 3 We can extend the formal definitions

for random variables to random vectors.
(X, Y) is a random vector if and only
if (X, Y) is P-measurable. That is,
(X, Y)−1(B) ∈ A for all B ∈ B, where B

is now the Borel σ-algebra on R2.

of X, Y is

FX,Y(x, y) = P(X ≤ x, Y ≤ y)

= P({ω : X(ω) ≤ x} ∩ {ω : Y(ω) ≤ y})

We say that (X, Y) is a discrete random vector if

FX,Y(x, y) = ∑
u≤x

∑
v≤y

fX,Y(u, v),

where fX,Y(x, y) = P(X = x, Y = y) is the joint probability mass
function of (X, Y). We say that (X, Y) is a continuous random vector
if

FX,Y(x, y) =
∫ x

−∞

∫ y

−∞
fX,Y(u, v)dvdu,

where fX,Y(x, y) is the joint probability density function of (X, Y).
As in the univariate case,

fX,Y(x, y) =
∂2FX,Y(x, y)

∂x∂y

at the points of continuity of FX,Y. From the joint cdf of (X, Y), we
can recover the marginal cdfs. We have that

FX(x) = P(X ≤ x)

= P(X ≤ x, Y ≤ ∞)

= lim
y→∞

FX,Y(x, y).

We can also recover the marginal pdfs from the joint pdf using

fX(x) = ∑
y

fX,Y(x, y) if discrete

, and
fX(x) =

∫
Sy

fX,Y(x, y)dy if continuous.

Consider the discrete case. Let x be such that fX(x) > 0. Then, the
conditional pmf of Y given X = x is

fY|X(y|x) =
fX,Y(x, y)

fX(x)
.

This satisfies the following two properties:

fY|X(y|x) ≥ 0

∑
y

fY|X(y|x) = 1.
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That is, fY|X(y|x) is a well-defined pmf for a discrete random vari-
able. The conditional cdf of Y given X = x is then

FY|X(y|x) = P(Y ≤ y|X = x) = ∑
v≤y

fY|X(v|x)

.
Next, consider the continuous case. It is analogous. For any x such

that fX(x) > 0, the conditional pdf of Y given X = x is

fY|X(y|x) =
fX,Y(x, y)

fX(x)
.

Provided that fX(x) > 0, this is a well-defined pdf for a continuous
random variable. The conditional cdf is

FY|X(y|x) =
∫ y

−∞
fY|X(v|x)dv.

Remark 0.8. The conditional pmf for two discrete random variables can be
interpreted as a probability. That is, for the discrete random vector (X, Y),

fY|X(y|x) = P(Y = y|X = x).

However, this is not true for continuous random variables because if X is
continuous, P(X = x) = 0. Instead, think about it as

fY|X(x, y) = P(X ∈ dx|Y = y)

= lim
∆y→0

P(X ∈ dx|y ≤ Y ≤ y + dy)

Finally, we extend the definition of independence to random vari-
ables. The random variables X, Y are independent if FY|X(y|x) =

FY(y) or equivalently, if FX,Y(x, y) = FX(x)FY(y). We can also define
this in terms of the densities. X, Y are independent if fY|X(y|x) =

fY(y) or equivalently, if fX,Y(x, y) = fX(x) fY(y).
All of these definitions and results extend to n-dimensional ran-

dom variables in a straightforward manner.

Transformations of Random Variables

Let X be a random variable with cdf FX . Define the random variable
Y = h(X), where h is a one-to-one function whose inverse h−1 exists.
What is the distribution of Y?

First, suppose that X is discrete and takes on values x1, . . . , xn. Y is
also discrete and takes on the values

yi = h(xi), for i = 1, . . . , n.

We have that the pmf of Y is given by

P(Y = yi) = P(X = h−1(xi))
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fY(y) = fX(h−1(yi))

Next, suppose that X is continuous. Consider the case where h is
increasing. We have that

FY(y) = P(Y ≤ y)

= P(X ≤ h−1(y)) = FX(h−1(y)).

It follows directly that

fY(y) =
dFY(y)

dy

= fX(h−1(y)
dh−1(y)

dy

In the case were h is decreasing, we can analogously show that

fY(y) = − fX(h−1(y)
dh−1(y)

dy

Combining these two cases, we have that, in general,

fY(y) = fx(h−1(y))|dh−1(y)
dy

|

Example 0.4. Suppose X ∼ U[0, 1] and Y = X2. Over the support of X,
this is a one-to-one transformation. We have that

X =
√

Y, dX/dY =
1
2

y−1/2.

Applying the formula above, we have that SY = [0, 1] and

fY(y) =
1
2

y−1/2.

This can extended to the multivariate case. Let X be a random
vector and as before, define Y = h(X). You can show that

fY(y) = fX(h−1(x))|J|

where |J| is the absolute value of the determinant of the Jacobian
matrix of the inverse transformation. That is, |J| is the absolute value
of the determinant of the matrix whose i, j-th entry is ∂xi/∂yj.

Expectations

Suppose X is a discrete random variable. Its expectation or expected
value is defined as

E[X] = ∑
x

x fX(x).
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if ∑x |x| fX(x) < ∞. Otherwise, its expectation is said to not exist.
Suppose X is a continuous random variable. Its expectation is de-
fined as

E[X] =
∫

SX

x fX(x)dx

if
∫

SX
|x| fX(x)dx < ∞. Otherwise, its expectation is said to not exist.4 4 Formally, the expectation is defined

using the Lebesgue-Stieltjes integral.We can also define the expectation of functions of random variables.
Let g : R→ R. Then, if X is discrete,

E[g(X)] = ∑
x

g(x) fX(x)

and if X is continuous, then

E[g(X)] =
∫

SX

g(x) fX(x)dx.

The following are useful properties of the expectation operator.
Suppose a, b ∈ R and g1(·), g2(·) are real-valued functions.

1. E[a] = a.

2. E[ag1(X)] = aE[g1(X)].

3. E[g1(X) + g2(X)] = E[g1(X)] + E[g2(X)].

These properties together imply that the expectation is a linear opera-
tor.

We can use the expectation operator to express probabilities. An
indicator function 1(A) is a function that is equal to one if condition
A is true and zero otherwise. For example, if X is a random variable,
then

1(X ≤ x) =

1 if X ≤ x

0 otherwise

Note that (for the continuous case)

E[1(X ≤ x)] =
∫ ∞

−∞
1(X ≤ x) fX(x)dx

=
∫ x

−∞
fX(x)dx

= FX(x) = P(X ≤ x).

More generally, if AX ⊆ R, we have that

E[1(X ∈ AX)] = P(X ∈ AX)

This is a very useful result.
Suppose X, Y are random variables with joint density fX,Y(x, y).

Let g(x, y) : R2 → R. We have that

E[g(X, Y)] =
∫ ∞

−∞
g(x, y) fX,Y(x, y)dydx.
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Note that by linearity of the expectation, for a, b ∈ R,

E[aX + bY] = aE[X] + bE[Y].

Finally, if X, Y are independent, then for any functions h1(·), h2(·),

E[h1(X)h2(Y)] = E[h1(X)]E[h2(Y)].

All of these results generalize directly to higher dimensions.

Conditional expectations

Given a pair of random variables (X, Y) with a joint density fX,Y(x, y),
we can define the conditional expectation of Y given X = x as

E[Y|X = x] =
∫

SY

y fY|X(y|x)dy.

Note that this is a function of x. It is sometimes denote µY(x) and
called the regression function. In particular, this means we can view
this a random function E[Y|X]. The following theorem is extremely
useful. 5 5 This might be the most important

thing we cover in math camp!
Theorem 0.4. The law of iterated expectations 6 6 This is also called the Tower Property.

EY[Y] = EXEY|X [Y],

where EX denotes the expectation taken with respect to the marginal density
of X and EY|X denotes the expectation taken with respect to the conditional
density of Y given X.

Proof. We have that

EXEY|X [Y] =
∫ ( ∫

y fY|X(y)dy
)

fX(x)dx

=
∫ ∫

y fY|X(y) fX(x)dydx

=
∫

y
( ∫

fX,Y(x, y)dx
)

dy

=
∫

y fY(y)dy = E[Y]

What are some ways to interpret the conditional expectation? We
provided a formal definition but we also want to provide some intu-
ition. First, the conditional expectation is the solution to an optimal
forecasting problem. Suppose you wish to forecast the value of a ran-
dom variable Y. That is, we wish to pick h ∈ R that minimizes the
expected mean-square error

E[(Y− h)2] =
∫
(y− h)2 fY(y)dy.
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The first-order condition is∫
y fY(y)dy =

∫
h fY(y)dy =⇒ h∗ = E[Y].

That is, the optimal prediction of Y is E[Y]. 7 Now, suppose that we 7 Optimal with respect to expected
mean-square error. If we changed the
objective function to expected mean-
absolute error, E[|Y− h|], the solution is
the median of Y, h∗ = median(Y).

observe another random variable X and see that X = x. We wish to
forecast Y as a function of x. That is, we wish to minimize

E[(Y− h(X))2].

Note that we can always write any function of X as

h(x) = µY(x) + g(x)

by defining g(x) = h(x)− µY(x). So choosing h to minimize expected
mean-square error is equivalent to choosing g. We can then write

(Y− h(X))2 = (Y− µY(X))2 − 2g(X)(Y− µY(x)) + g(X)2.

I claim that 8 8 Can you show these steps?

EY|X [g(X)(Y− µY(x))] = 0

and so,
E[(Y− h(X))2] = E[(Y− µY(X))2 + g(X)2]

. It then follows immediately that expected mean-squared error is
minimized with g(x) = 0 and so,

h∗(x) = µY(x).

That is, the conditional expectation of Y given X is the optimal pre-
dictor of Y given X.9 9 And with that, you have learned a

good chunk of machine learning. I am
not joking.

Second, we can interpret the conditional expectation of Y given
X as the orthogonal projection of Y onto the space of functions of
the random variable X i.e. L2 space. Since this interpretation of the
conditional expectation is the focus of the first several lectures of
Econ 2120, I will not cover it here.

Moments and moment generating functions (MGFs)

Consider a random variable X. The k-th moment of X is defined as
E[Xk]. The first moment of X is its mean, E[X]. The k-th centered
moment of X is E[(X − E[X])k]. The second centered moment of X is
its variance, V(X) = E[(X − E[X])2]. The standard deviation of X is√

V(X).

Remark 0.9. Suppose X has mean µX and variance σ2
X . Let a, b ∈ R and

define Y = a + bX. Then,

µY = a + bµX , σ2
Y = b2σ2

X .
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Definition 0.14. The moment generating function (MGF) of a random
variable X is defined as

µX(t) = E[etX ] =
∫

etx fX(x)dx.

The MGF of X is useful because it allows us to easily compute all
of the moments of a random variable. Note that

µ′X(t) =
∫

xetx fX(x)dx, µ′X(0) =
∫

x fX(x)dx = E[X],

µ′′X(t) =
∫

x2etx fX(x)dx, µ′′X(0) =
∫

x2 fX(x)dx = E[X2].

In general, we can show that

µ
(j)
X (0) = E[X j] for j = 1, 2, . . .

Moreover, the MGF of a random variable completely characterizes
the distribution of a random variable. If X, Y are two random vari-
ables with the same MGF, then they have the same distribution.

Remark 0.10. The MGF may not always exist for a random variable.
For example, etX may blow up for large realizations of X. However, the
characteristic function of X is guaranteed to exist. It is defined as

E[eitx], i =
√
−1.

The characteristic function is guaranteed to exist and it completely charac-
terizes the distributed of X.

Moments for random vectors

Suppose X, Y are two random variables with joint density fX,Y(x, y).
The covariance between X, Y is defined as

Cov(X, Y) = E[(X− E[X])(Y− E[Y])]

= E[XY]− E[X]E[Y]

The covariance is a linear operator. That is,

Cov(X, aY + bW) = aCov(X, Y) + bCov(X, W).

Moreover, suppose Z = aX + bY for a, b ∈ R. Then,

V(Z) = a2V(X) + b2V(Y) + 2abCov(X, Y).

Now suppose that X is an n-dimensional random vector with
X = (X1, . . . , Xn). Its mean vector is

E[X] =


E[X1]

...
E[Xn]
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and its covariance matrix is

V(X) = Σ

where Σ is an n × n matrix whose ij-th entry is Σij = Cov(Xi, Xj).
Σ is a positive semi-definite matrix. Why? Let α ∈ Rn and define
Y = αTX. Then,

V(Y) = αTΣα ≥ 0.

This must hold for all α ∈ Rn.

Useful Probability Distributions

Bernoulli distribution

X is a discrete random variable that can only take on two values: 0, 1.
We write fX(1) = p, fX(0) = 1− p and so,

fX(x) = px(1− p)1−x.

Note that

E[Xk] = p, k ≥ 1

V(X) = p(1− p),

µX(t) = (1− p) + pet.

We say that X has a Bernoulli distribution.

Binomial distribution

Suppose that Xi for i = 1, . . . , n are i.i.d Bernoulli random variables
with P(Xi = 1) = p. Define X = ∑n

i=1 Xi. We say that X follows a
binomial distribution with parameters n and p. X takes on values
1, 2, . . . , n. Its pmf is

fX(x) =
(

n
x

)
px(1− p)n−x

and
E[X] = np, V(X) = np(1− p).

Poisson distribution

Suppose that X is a discrete random variables and takes on values
1, 2, 3, . . .. Its pmf is

fX(x) =
λxe−λ

x!
, λ > 0
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We say that X is a Poisson random variable with parameter λ > 0.
Note that

E[X] = λ, V(X) = λ.

Poisson random variables are typically used to model the number of
discrete "successes" that occur over a time period.

Remark 0.11. Note that if Xn is binomially distributed with parameters

n, p = λ/n, then Xn
d−→ X, where X is a Poisson random variable.10 10 The notation Xn

d−→ X means that
the sequence of random variables Xn
"converges in distribution" to the ran-
dom variable X. We have not formally
defined this yet but intuitively, it means
that as n gets large, Xn behaves as if it
were distributed like X.

Uniform distribution

Suppose that X is a continuous random variable with fX(x) = 1
b−a

for x ∈ [a, b] and 0 otherwise. We say that X is uniformly distributed
on [a, b] and write X ∼ U[a, b].

Univariate normal distribution

Suppose Z is continuously distributed with support over R. We say
that X follows a standard normal distribution if

fZ(z) =
1√
2π

e−
1
2 z2

We write Z ∼ N(0, 1) where E[Z] = 0, V(Z) = 1. We say that X ∼
N(µ, σ2) if fX(x) = 1√

2πσ2 e−
1

2σ2 (x−µ)2
Note that E[X] = µ, V(X) = σ2

and X = µ + σZ, where Z ∼ N(0, 1).
The MGF of a standard normal random variable is incredibly

useful. 11 It is worth memorizing. If Z ∼ N(0, 1), then 11 For example, you’ll run into it all the
time in macro/finance.

MZ(t) = e
1
2 t2

.

Why? Here’s the calculation: 12 12 It’s straightforward provided you
remember how to complete the square.

MZ(t) = E[etZ]

=
∫ ∞

−∞
etz 1√

2π
e−

1
2 z2

dz

=
∫ ∞

−∞

1√
2π

etz− 1
2 z2

dz

=
∫ ∞

−∞

1√
2π
− 1

2
e−

1
2 (z

2−2tz)dz

= e
1
2 t2
∫ ∞

−∞

1√
2π

e−
1
2 (z

2−2tz+t2)dz

= e
1
2 t2
∫ ∞

−∞

1√
2π

e−
1
2 (z−t)2

dz

= e
1
2 t2
∫ ∞

−∞

1√
2π

e−
1
2 (w)2

dz, w = z− t

= e
1
2 t2
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We can use this to derive the MGF for X ∼ N(µ, σ2). We have that

MX(t) = E[etX ]

= E[et(µ+σZ)]

= etµE[etσZ]

= etµ MZ(tσ)

= eµt+ 1
2 σ2t2

Therefore, we have that

MX(t) = eµt+ 1
2 σ2t2

.

Chi-squared distribution

Let Zi ∼ N(0, 1) i.i.d. for i = 1, . . . , n. Let

X =
n

∑
i=1

Z2
i .

We say that X is a chi-squared random variable with n degrees of
freedom and write X ∼ χ2

n. It follows immediately that

E[X] = n, V(X) = 2n

.

Figure 1: Density of χ2 as degree of
freedom varies. (Source: Wikipedia)

F-distribution

Let Y1 ∼ χ2
k , Y2 ∼ χ2

l with Y1 ⊥ Y2. Define

Q =
Y1/k
Y2/l

.

We say that Q follows an F-distribution with k, l degrees of freedom.
We write Q ∼ Fk,l .

Figure 2: Density of Fk,l as degrees of
freedom vary. (Source: Wikipedia)

Student t-distribution

Let Z ∼ N(0, 1) and Y ∼ χ2
n with Z ⊥ Y. Define

T = Z/
√

Y/n

We say that T is student t-distributed with n degrees of freedom
and write T ∼ tn. We have that

E[T] = 0

V(T) =

 n
n−2 , if n > 2,

∞, n = 1, 2

Remark 0.12. As n → ∞, Tn
d−→ Z ∼ N(0, 1). This result is the

foundation of asymptotic inference in econometrics.

Figure 3: Density of tn as degree of
freedom varies. (Source: Wikipedia)
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Exponential distribution

Suppose that X is a continuous random variable with support over
R+. X is exponentially distributioned with parameter λ > 0 if

fX(x) = λe−λx.

We write X ∼ exp(λ) and have that

E[X] =
1
λ

V(X) =
1

λ2

Figure 4: Distribution of exp(λ) as λ.
(Source: Wikipedia)

Multivariate Normal Distribution

Consider the random vector Z = (Z1, . . . , Zm)′, where each Zi ∼
N(0, 1) i.i.d. The joint density of Z is given by

fZ(z) = Πm
i=1

1√
2π

e−
1
2 z2

i

= (1/2π)n/2 exp(−1
2

m

∑
i=1

z2
i )

= (2π)n/2 exp(−1
2

z′z)

Moreover, note that E[Z] = 0 and V(Z) = Im. Finally, the MGF of Z is
given by

MZ(t) = E[et′Z]

= E[Πm
i=1etizi ]

= Πm
i=1E[etiz+i] = e

1
2 t′t

This is a useful reference point as we develop some results about the
multivariate normal distribution.

Definition 0.15. A m-dimensional random vector X follows a m-dimensional
multivariate normal distribution if and only if

aTX

is normally distributed for all a ∈ Rm. We write X ∼ Nm(µ, Σ), where
E[X] = µ is the m-dimensional mean vector and V(X) = Σ is the m× m
dimensional covariance matrix.13 13 Typically, the dimensional is sup-

pressed in the notation. That is, if X
is m-dimensional and follows a mul-
tivariate normal distribution, we will
typically write X ∼ N(µ, Σ). The di-
mensions of µ, Σ are implied by the
context.

Remark 0.13. If X follows a multivariate normal distribution, then each
element Xi follows a univariate normal distribution with mean µi and
variance Σii.
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Remark 0.14. It is important to have a good handle on the properties of the
univariate and multivariate normal distributions. When we use asymptotics
to approximate the finite-sample distribution of estimators and test-statistics
in econometrics, everything "becomes" normally distributed by the central
theorem. 14 14 Not literally everything but you get

the point.
The next two results will allow us to derive the distribution of a

multivariate normal. We first derive its MGF.

Proposition 0.2. Suppose X ∼ N(µ, Σ). Then,

MX(t) = et′µ+ 1
2 t′Σt.

Proof. Note that t′X ∼ N(t′µ, t′Σt). Therefore,

MX(t) = E[et′X ]

= E[eY], Y ∼ N(t′µ, t′Σt)

= MY(1)

and the result follows.

Recall that for a univariate normal distribution, if X ∼ N(µ, σ2), then
Y = aX + b ∼ N(aµ + b, a2σ2). The same property holds for the
multivariate normal distribution.

Proposition 0.3. Suppose X ∼ Nm(µ, Σ). Define

Y = AX + b,

where A ∈ Rn×m, b ∈ Rn. Then,

Y ∼ Nn(Aµ + b, AΣA′).

Proof. For t ∈ Rn,

MY(t) = E[et′Y]

= E[et′(AX+b)]

= et′bE[e(A′t)′X

= et′be(A′t)′µ+ 1
2 (A′t)′Σ(A′t)′

= et′(Aµ+b)+ 1
2 t′(AΣA′)t

We’ll now use the two previous results to derive the density of a
multivariate normal distribution.

Proposition 0.4. Suppose X ∼ N(µ, Σ) and Σ has full column rank. Then,
the density of X is given by

fX(x) = (2π)−m/2|Σ|−1/2 exp(−1
2
(x− µ)′Σ−1(x− µ)).
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Proof. Let Z be a m-dimensional random vector of i.i.d. standard nor-
mal random variables. At the beginning of this section, we derived
that MZ(t) = e

1
2 t′t. Therefore, Z ∼ Nm(0, Im). We also derived that

the density of Z is
fZ(z) = (2π)−m/2e−

1
2 z′z.

Let X = µ + Σ1/2Z. We can show that X ∼ Nm(µ, Σ). From the
multivariate transformation of random variables formula from an
earlier section,

fX(x) = |Σ|−1/2 fZ(Σ−1/2(x− µ))

and the result follows.

The rest of this section lists additional useful properties of the
multivariate normal distribution that will appear from time to time.
It’s useful to be familiar with them.

Proposition 0.5. If X1 ∼ Nm(µ1, Σ1), X2 ∼ Nn(µ2, Σ2) and X1 ⊥ X2,
then

X = (X′1, X′2)
′ ∼ Nm+n(µ, Σ)

where

µ =

(
µ1

µ2

)
, Σ =

(
Σ1 0
0 Σ2

)

Proposition 0.6. Let X ∼ Nm(µ, Σ). Let X1 be a p-dimensional sub-vector
of X with p < m. Write

X =

(
X1

X2

)
and

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then, X1 ∼ Np(µ1, Σ11).

Proposition 0.7. Let X ∼ Nm(µ, Σ). Partition X into two sub-vectors.
That is, write

X =

(
X1

X2

)
and

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then, X1 ⊥ X2 if and only if Σ12 = Σ21 = 0.
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Proposition 0.8. Let X ∼ Nm(µ, Σ). If

Y = AX + b, V = CX + d,

where A, C ∈ Rn×m and b, d ∈ Rn, then

Cov(Y, V) = AΣC′.

Moreover, Y ⊥ V if and only if

AΣC′ = 0.

Exercise 0.3. Prove these properties of the multivariate normal distribution.

Proposition 0.9. Let X ∼ Nm(µ, Σ) with X = (X′1, X′2)
′, µ = (µ′1, µ′2)

′

and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Provided that Σ22 has full rank, the conditional distribution of X1 given
X2 = x2 is

X1|X2 = x2 ∼ N(µ1 + Σ12Σ−1
22 (x2 − µ2), Σ11 − Σ12Σ−1

22 Σ21).

Remark 0.15. What’s the intuition of this? We have that

E[X1|X2 = x2] = µ1 + Σ12Σ−1
22 (x2 − µ2).

This formula will look more familiar if everything is one-dimensional. It
becomes

E[X1|X2 = x2] = E[X1] +
Cov(X1, X2)

V(X2)
(x2 − E[X2])

Is this starting to look more familiar? Not yet? Ok, let’s relabel Y =

X1, X = X2 and re-arrange. Then,

E[Y|X = x] = (E[Y]− Cov(Y, X)

V(X)
E[X]) +

Cov(Y, X)

V(X)
x.

This is simply the linear regression formula!15 For a multivariate normal 15 Set β0 = E[Y] − Cov(Y,X)
V(X)

E[X] and

β1 = Cov(Y,X)
V(X)

. Then, E[Y|X = x] =
β0 + β1x.

random distribution, conditional expectations are exactly linear. As a result,
linear regression exactly returns the conditional expectation function.

This final result provides the conditional distribution of a multivari-
ate normal distribution. This appears at random points throughout
the first year and so, it is useful to keep in your back pocket.

Quadratic forms of normal random vectors

Recall that a quadratic form is a quantity of the form y′Ay, where
A is a symmetric matrix. Suppose that Zi ∼ N(0, 1) i.i.d. for i =

1, . . . , n. We already know that ∑n
i=1 Z2

i = Z′Z ∼ χ2
n.

Proposition 0.10. If X ∼ Nm(µ, Σ) and Σ has full rank, then

(X− µ)′Σ−1(X− µ) ∼ χ2
m.

Proof. Let Z = Σ−1/2(X− µ) ∼ Nm(0, Im). Then, Z′Z ∼ χ2
m.
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Jensen, Markov and Chebyshev, Oh My!

The following are some useful inequalities that pop up in a variety
of contexts in econometrics and other areas of economics. These are
especially useful in asymptotics.

Theorem 0.5. Jensen’s inequality
Let h(·) be a convex function and X be a random variable. Then,

E[h(X)] ≥ h(E[X]).

Proof. Recall that if h· is a convex function, then ∀x0 in its domain,
there exists a line through (x0, h(x0)) such that h(x) never falls below
the line. That is, there exists some constant a such that

h(x) ≥ h(x0) + a(x− x0) ∀x

Set x0 = E[x]. It follows that

h(X) ≥ h(E[X]) + a(x− E[X])

holds for all x. Taking expectations, we have that

E[h(X)] ≥ h(E[X]).

Figure 5: Picture proof of Jensen’s
inequality.

Remark 0.16. If h(·) is concave, the opposite inequality holds. That is,

E[h(X)] ≤ h(E[X])

The next inequality (Markov’s inequality) provides a bound tail
behavior of a random variable as a function of its expectation.

Theorem 0.6. Markov’s inequality
Suppose X is a random variable with X ≥ 0 with E[X] < ∞. 16 Then, 16 X ≥ 0 for a random variable means

that P({ω : X(ω) < 0}) = 0.for all M > 0,

P(X ≥ M) ≤ E[X]

M
.

Proof. The proof is straightforward. Because X ≥ 0,

X ≥ M1(X ≥ M).

Taking expectations of both sides, we have that

E[X] ≥ ME[1(X ≥ M) = MP(X ≥ M)

annd re-arrange to arrive at the result.

Figure 6: Picture proof of Markov’s
inequality.
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Example 0.5. Suppose that household income is non-negative. By Markov’s
inequality, no more than 1/5 of households can have an income that is
greater than five times the average household income.

The final inequality (Chebyshev’s inequality) is a corollary of
Markov’s inequality. It provides an upper bound on the probability
that a random variable falls a certain distance from its expectation.

Theorem 0.7. Chebyshev’s inequality
Suppose that X is a random variable such that σ2 = Var[X] < ∞. Then,

for all M > 0,

P(|X− E[X]| > M) ≤ σ2

M2 .

Proof. Let Y = (X − E[X])2. Apply Markov’s inequality to Y and the
cutoff M2 to get

P(Y ≥ M2) ≤ E[Y]
M2 .

Rewrite to get that

P(|X− E[X]| ≥ M) ≤ σ2

M2

Example 0.6. Chebyshev’s inequality is used in a proof of the weak law
of large numbers (WLLN). 17 For now, WLLN states: as the sample size 17 The weak law of large numbers will

be introduced in detail later.gets very large, the sample average of a random variable "converges" to the
expectation of the random variable. One proof begins by showing that the
variance of the sample average converges to zero and then uses Chebyshev’s
inequality to prove the result.18 18 If that made no sense, don’t worry

about it. We’ll go through this together.
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