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Abstract

In this paper, we introduce the nonparametric, direct potential outcome system as a foun-

dational framework for analyzing dynamic causal effects of assignments on outcomes in ob-

servational time series settings. Using this framework, we provide conditions under which

common predictive time series estimands, such as the impulse response function, generalized

impulse response function, local projection, and local projection instrument variables, have a

nonparametric causal interpretation in terms of such dynamic causal effects.
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1 Introduction
In this paper, we introduce the nonparametric, direct potential outcome system as a foundational
framework for analyzing dynamic causal effects of assignments on outcomes in observational time
series settings. We consider settings in which there is a single unit (e.g., macroeconomy or market)
observed over time. At each time period t ≥ 1, the unit receives a vector of assignments Wt,
and an associated vector of outcomes Yt are generated. The outcomes are causally related to the
assignments through a potential outcome process, which is a stochastic process that describes what
would be observed along counterfactual assignment paths. A dynamic causal effect is generically
defined as the comparison of the potential outcome process along different assignment paths at a
fixed point in time.

*This is a revised version of “A nonparametric dynamic causal model for macroeconometrics.” We thank Iavor
Bojinov, Gary Chamberlain, Fabrizia Mealli, James M. Robins, Frank Schorfheide and James H. Stock for conversa-
tions that have helped developed our thinking on causality. We are also grateful to many others, including conference
participants, for their comments on earlier versions of this paper. All remaining errors are our own.

†Harvard University, Department of Economics: asheshr@g.harvard.edu
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Importantly, we place no functional form restrictions on the potential outcome process, no re-
strictions on the extent to which past assignments may causally affect outcomes, nor common time
series assumptions such as “invertibility” or “recoverability” on the system of potential outcomes
and assignments. Most leading econometric models used to study dynamic causal effects in time
series settings, such as the structural vector moving average model and (both linear and non-linear)
structural vector autoregressions, can be cast as special cases of the direct potential outcome system
by introducing these additional restrictions on the potential outcome process or the full system. In
this sense, the direct potential outcome system provides a flexible, nonparametric foundation upon
which to analyze dynamic causal effects in time series settings.

We then analyze conditions under which predictive time series estimands, such as the impulse
response function (Sims, 1980), generalized impulse response function (Koop et al., 1996), local
projection (Jordá, 2005) and local projection instrumental variables (Jordá et al., 2015), have a non-
parametric causal interpretation in terms of dynamic causal effects of assignments on outcomes.
That is, under what conditions do these common time series estimands have a nonparametric causal
interpretation as measuring how movements in the outcomes Yt+h for some h ≥ 0 are dynamically
caused by changes in the assignments Wt? In exploring this question, we focus on four data envi-
ronments, which place alternative assumptions on what output is observed by the researcher.

First, we analyze a benchmark case in which the researcher directly observes both the out-
comes Yt+h and the assignments Wt generated by the potential outcome system through time.
We show that impulse response functions, local projections, and generalized impulse response
functions of the outcome Yt+h on the assignment Wt identify a dynamic average treatment ef-
fect, a weighted average of marginal average treatment effects, and a filtered average treatment
effect respectively if the assignments Wt are randomly assigned. Random assignment requires
that the assignment must be independent of the potential outcome process (which is familiar from
cross-sectional causal inference) and the assignments must be independent over time. These re-
sults provide a new perspective on a rapidly growing empirical literature in macroeconomics that
constructs measures of underlying economic shocks, and then uses these constructed measures to
estimate dynamic causal effects using reduced form methods. Nakamura and Steinsson (2018b)
refers to this empirical strategy as “direct causal inference.” Our first set of results therefore pro-
vide conditions that these constructed shocks must satisfy in order for the resulting reduced form
estimates to be causally interpretable.

Second, we provide a special case of the direct potential outcome system to incorporate instru-
ment variables Zt that causally affect the assignment Wt but not the outcome Yt+h. Provided the
researcher directly observes the instrument, the assignment, and outcome, it is natural to consider
the causal interpretation of the time-series analogue of common instrumental variable estimands.
We focus attention on dynamic instrument variable estimands that take the ratio of an impulse
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response function of the outcome Yt+h on the instrument Zt (a “reduced-form”) relative to an im-
pulse response function of the assignment Wt+h on the instrument Zt (a “first stage”). We show
that such dynamic instrumental variable estimands identify an appropriately defined dynamic “lo-
cal average treatment effect” in the spirit of Imbens and Angrist (1994), provided the instrument
is randomly assigned and satisfies a monotonicity condition that is familiar from cross-sectional
causal inference. The dynamic local average treatment effects that we characterize measure the
average dynamic treatment effect of the assignment on the h-period ahead outcome conditional on
the event that the instrument causally affects the treatment.

We further analyze the case in which the researcher only observes the instrument Zt and out-
come Yt+h but not the treatment Wt itself. This is an important case. Empirical researchers in
macroeconomics increasingly use “external instruments” to identify the dynamic causal effects of
unobservable economic shocks on macroeconomic outcomes (e.g., see Jordá et al., 2015; Gertler
and Karadi, 2015; Nakamura and Steinsson, 2018a; Ramey and Zubairy, 2018; Stock and Watson,
2018; Plagborg-Møller and Wolf, 2020; Jordá et al., 2020). In this research, it is common for em-
pirical researchers to analyze estimands that involve two distinct elements of the outcome vector
Yj,t+h, Yk,t and the instrument. For example, given an external instrument Zt for the unobserved
monetary policy shock Wt (e.g., Kuttner, 2001; Cochrane and Piazessi, 2002; Gertler and Karadi,
2015), it is common to measure the dynamic causal effect of the monetary policy shock on un-
employment Yj,t+h by (1) estimating a reduced-form impulse response function of unemployment
on the external instrument, (2) estimating a “first stage” impulse response function of the Federal
Funds rate Yk,t on the external instrument, (3) report the ratio of these impulse responses (e.g.,
Jordá et al., 2015; Stock and Watson, 2018; Jordá et al., 2020).

We show that dynamic IV estimands constructed in this manner are causally interpretable,
and nonparametrically identify a relative, dynamic local average treatment effect that measures
the causal response of the h-step ahead outcome Yj,t+h to a change in the treatment Wk,t that
raises the contemporaneous outcome Yk,t by one unit among compliers (i.e., in the monetary policy
example, the dynamic causal effect of unemployment to a monetary policy shock that raises the
Federal funds rate by one unit). This result therefore provides a motivation for the recent surge in
interest in external instruments in empirical macroeconomics — provided one exists, an external
instrument can be used to identify causally interpretable estimands without resorting to functional
form restrictions on the outcomes and without even directly observing the treatment itself.

Finally, we conclude by briefly discussing the most challenging data environment in which the
researcher only observes the outcomes Yt+h, but not the treatmentsWt nor any external instruments
Zt. This is the leading setting considered by much of the foundational and influential research on
model-based approaches to analyzing dynamic causal effects in macroeconometrics (e.g., Sims,
1972, 1980). We consider this setting in order to place the direct potential outcome system in this
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broader context, and illustrate that researchers can recover familiar model-based approaches by
introducing functional form restrictions on the potential outcome process.

Taking a step back, quantifying dynamic causal effects is one of the great themes of the
broader time series literature. Researchers use a variety of methods such as Granger causality
(Wiener, 1956; Granger, 1969; White and Lu, 2010), highly structured models such as DSGE
models (Herbst and Schorfheide, 2015), state space modelling (Harvey and Durbin, 1986; Harvey,
1996; Brodersen et al., 2015; Menchetti and Bojinov, 2021) as well as intervention analysis (Box
and Tiao, 1975) and regression discontinuity (Kuersteiner et al., 2018). The nonparametric poten-
tial outcome framework we develop is distinct. References to some of the more closely related
work will be given in the next section. This paper is not focused on estimators and the associated
distribution theory: we do not have much to say in that regard which is novel.

Roadmap: Section 2 defines the direct potential outcome system and introduces the main class
of dynamic causal effects that we focus on throughout the paper. Section 3 looks at the causal
meaning of common statistical estimands based on seeing the realized assignments and outcomes.
The instrumented potential outcome system is defined in Section 4, which relates assignments and
instruments to outcomes. Section 5 studies the causal interpretation of estimands based on seeing
the realized assignments, instruments and outcomes. Section 6 looks at the causal meaning of
estimands where only the instruments and outcomes are observed. Section 7 looks at the causal
meaning of common statistical estimands where only the outcomes are observed. We collect all
proofs in the Appendix.

Notation: For a time series {At}t≥1 with At ∈ A for all t ≥ 1, let A1:t := (A1, . . . , At) and
At :=×t

s=1
A. A ⊥⊥ B says that random variables A and B are probabilistically independent.

2 The Direct Potential Outcome System and Dynamic Causal
Effects

We now introduce the direct potential outcome system, which extends the design-based approach
developed in Bojinov and Shephard (2019) to stochastic processes. We define a large class of
casual estimands that summarize the dynamic causal effects of varying the assignment on future
outcomes. As an illustration, we show that the direct potential outcome system nests most leading
structural models in macroeconometrics as a special case.

The nonparametric potential outcome framework we develop relates to a vast literature on
dynamic treatment effects in small-T , large-N panels. The panel work of Robins (1986) and
Abbring and Heckman (2007), amongst others, led to an enormous literature on dynamic causal
effects in panel data (Murphy et al., 2001; Murphy, 2003; Heckman and Navarro, 2007; Lechner,
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2011; Heckman et al., 2016; Boruvka et al., 2018; Lu et al., 2017; Blackwell and Glynn, 2018;
Hernan and Robins, 2021; Bojinov et al., 2021; Mastakouri et al., 2021). Beyond Bojinov and
Shephard (2019), our work is most closely related to Angrist and Kuersteiner (2011) and Angrist
et al. (2018). We discuss their work in Section 2.3.

2.1 The Direct Potential Outcome System
There is a single unit. At each time period t ≥ 1, the unit receives a dw-dimensional assignment
{Wt}t≥1. Associated with this assignment process, we observe a dy-dimensional outcome {Yt}t≥1.
The outcomes are causally related to the assignments through the potential outcome process, which
describes what outcome would be observed at time t along a particular path of assignments.

Assumption 1 (Assignment and Potential Outcome). The assignment process {Wt}t≥1 satisfies

Wt ∈ W :=×dw

k=1
Wk ⊆ Rdw . The potential outcome process is, for any deterministic sequence

{ws}s≥1 with ws ∈ W for all s ≥ 1, {Yt({ws}s≥1)}t≥1 , where the time-t potential outcome

satisfies Yt({ws}s≥1) ∈ Y ⊆ Rdy .

The simplest case is when the assignment is scalar and binaryW = {0, 1}, in which case Wt = 1

corresponds to “treatment” and Wt = 0 is “control.”
The potential outcome Yt({ws}s≥1) may depend on future assignments {ws}s≥t+1. Our next

assumption rules out this dependence, restricting the potential outcome to only depend on past and
contemporaneous assignments.1

Assumption 2 (Non-anticipating Potential Outcomes). For each t ≥ 1, and all deterministic

{wt}t≥1, {w′t}t≥1 with wt, w
′
t ∈ W ,

Yt(w1:t, {ws}s≥t+1) = Yt(w1:t, {w′s}s≥t+1) almost surely.

Assumption 2 is a stochastic process analogue of non-interference (Cox, 1958; Rubin, 1980), ex-
tending White and Kennedy (2009) and Bojinov and Shephard (2019). It still allows for rich
dependence on past and contemporaneous assignments. Under Assumption 2, we drop references
to the future assignments in the potential outcome process, and write

{Yt({ws}s≥1)}t≥1 = {Yt(w1:t)}t≥1.

The set {Yt(w1:t) : w1:t ∈ W t} collects all the potential outcomes at time t.
Together, the assignments and potential outcome generate the output of the system.

Assumption 3 (Output). The output is {Wt, Yt}t≥1 = {Wt, Yt(W1:t)}t≥1. The {Yt}t≥1 is called the

outcome process.
1Such a restriction is one of the nine Bradford Hill (1965) criteria for causality (“temporality”).

5



The outcome process is the potential outcome process evaluated at the assignment process.
Finally, we assume that the assignment process is sequentially probabilistic, meaning that

any assignment vector may be realized with positive probability at time t given the history of the
observable stochastic processes up to time t−1. Let {Ft}t≥1 denote the natural filtration generated
by (the σ-algebra of) the realized {wt, yt}t≥1.

Assumption 4 (Sequentially probabilistic assignment process). The assignment process satisfies

0 < P (Wt = w | Ft−1) < 1 with probability one for all w ∈ W . Here the probabilities are

determined by a filtered probability space of {Wt, {Yt(w1:t), w1:t ∈ W t}}t≥1.

This is the time series analogue of the “overlap” condition in cross-sectional causal studies. We
make this assumption throughout the paper in order to focus attention on the causal interpretation
of common time series estimands in the presence of rich dynamic causal effects. Understanding
how violations of Assumption 4 affect the causal interpretation and estimation of common time
series estimands is an important but separate issue.

By putting these assumptions together, we define a direct potential outcome system.

Definition 1 (Direct Potential Outcome System). Any {Wt, {Yt(w1:t) : w1:t ∈ W t}}t≥1 satisfying

Assumptions 1-4 is a direct potential outcome system.

We refer to Definition 1 as a “direct” potential outcome system in order to emphasize that it focuses
on nonparametrically modelling the direct causal effects of the assignment process {Wt} on the
outcomes {Yt}. We do not, however, explicitly allow for the assignment Wt to have a causal
effect on future assignments Ws for s > t. That is, we do not introduce a potential assignment
Wt(w1:t−1) which would model the assignment Wt that would be realized along the assignment
path w1:t−1 ∈ W t−1 and would open an indirect, causal mechanism that allows the assignment
Wt to indirectly affect future outcomes through its effect on future assignments.2 The assignment
process {Wt} in the direct potential outcome system can still nonetheless have rich dependence.
Assumption 1 places no restrictions on how Wt,Ws for s 6= t are probabilistically related.

In focusing on the direct causal effects of assignments on outcomes, we adopt a common
perspective in both macroeconometrics and financial econometrics. In particular, it is common in
macroeconometrics to focus on studying the direct causal effects of underlying economic “shocks”
on outcomes, which are thought to be underlying “random causes” that drive economic fluctuations
and are causally unrelated to one another (Frisch, 1933; Slutzky, 1937; Sims, 1980). The empir-
ical goal is to therefore trace out the dynamic causal effects of these primitive, economic shocks
{Wt} on macroeconomic outcomes {Yt}. We refer the readers to Ramey (2016), Stock and Watson

2Such indirect causal mechanisms are often studied in a large biostatistics literature on longitudinal causal effects
and dynamic treatment regimes – e.g., see Chapter 19 of Hernan and Robins (2021).
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(2016), and Stock and Watson (2018) for recent discussions of this perspective in macroeconomet-
rics. We further discuss the connections between the assignments in a direct potential outcome
system and economic “shocks” in Section 3.

Remark 1 (Background processes). We could have further introduced the background process

{Xt}t≥1 that is causally unaffected by the assignment process. Such a process would play the

same role as pre-assignment covariates in cross-sectional or longitudinal studies.

2.2 Dynamic Causal Effects
Any comparison of the potential outcome process at a particular point in time along different
possible realizations of the assignment process define a dynamic causal effect. The dynamic causal
effect at time t for assignment path w1:t ∈ W t and counterfactual path w′1:t ∈ W t is Yt(w1:t) −
Yt(w

′
1:t). Of course, this is an enormous class of dynamic causal effects as there are exponentially

many possible paths w1:t ∈ W t. We therefore introduce causal estimands that average over these
dynamic causal effects along various underlying assignment paths.

To do so, let us introduce some shorthand. For t ≥ 1, h ≥ 0, and any fixed w ∈ W , write the
time-(t+ h) potential outcome at the assignment process (W1:t−1, w,Wt+1:t+h) as

Yt+h(w) := Yt+h(W1:t−1, w,Wt+1:t+h).

Notice that Yt+h = Yt+h(Wt) in this notation.

Definition 2 (Dynamic causal effects). For t ≥ 1, h ≥ 0, and any fixed w,w′ ∈ W , the time-t,

h-period ahead impulse causal effect, filtered treatment effect, and average treatment effect are,

respectively:

Yt+h(w)− Yt+h(w′), E[Yt+h(w)− Yt+h(w′) | Ft−1], E[Yt+h(w)− Yt+h(w′)].

The impulse causal effect measures the ceteris paribus causal effect of intervening to switch the
time-t assignment from w′ to w on the h-period ahead outcomes holding all else fixed along the
assignment process. The impulse causal effect is a random object since the potential outcome
process itself is stochastic as well as the pastW1:t−1 and futureWt+1:t+h assignments are stochastic.

The filtered treatment effect averages the impulse causal effect conditional on the natural fil-
tration of assignments and observed outcomes up to time t − 1. We use the nomenclature “fil-
tered” following the stochastic process literature, where filtering refers to the sequential estimation
of time-varying unobserved variables, e.g. Kalman filter (Kalman, 1960; Durbin and Koopman,
2012), particle filter (Gordon et al., 1993; Pitt and Shephard, 1999; Chopin and Papasphiliopou-
los, 2020), and hidden discrete Markov models (Baum and Petrie, 1966; Hamilton, 1989). This
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labelling fits as the potential outcomes are unobserved.3

Finally, the average treatment effect further averages the filtered treatment effect over the fil-
tration, yielding the unconditional expectation of the impulse causal effect Yt+h(w)− Yt+h(w′).

Remark 2. If new outcome variables were added to an existing causal study, the impulse causal

effect and the average treatment effect for the existing variables would not be changed, but the

filtered treatment effect might as the new outcome variables would bulk up the filtration and so

possibly change the conditional expectation.

We further define analogous versions of the dynamic causal effects for a particular scalar as-
signment. For any fixed wk ∈ Wk, define

Yt+h(wk) := Yt+h(W1:t−1,W1:k−1,t, wk,Wk+1:dW ,t,Wt+1:t+h).

The corresponding time-t, h-period ahead impulse causal effect, filtered treatment effect, and av-
erage treatment effect for the k-th assignment are, respectively:

Yt+h(wk)− Yt+h(w′k), E[{Yt+h(wk)− Yt+h(w′k)} | Ft−1], E[Yt+h(wk)− Yt+h(w′k)].

The dynamic causal effects in Definition 2 summarize the causal effect of discrete interventions
to switch the time-t assignments on the outcomes. We finally introduce derivatives that summarize
marginal causal effects of incrementally varying the time-t assignment (see, for example, Angrist
and Imbens (1995) and Angrist et al. (2000) for analogous definitions in cross-sectional settings).

Definition 3. If they individually exist,

Y ′t+h(wk) =
∂Yt+h(wk)

∂wk

, E[Y ′t+h(wk) | Ft−1], E[Y ′t+h(wk)],

are called the time-t, h-period ahead marginal impulse causal effect, the marginal filtered treat-
ment effect, and the marginal average treatment effect respectively.

2.3 Links to macroeconometrics
Before continuing, we highlight how the direct potential outcome system naturally links to several
recent developments and debates in macroeconometrics and encompasses many familiar paramet-
ric models in that field. We start with the former.

First, the direct potential outcome system provides a unifying framework to analyze what
assumptions must be placed on the assignment process to endow causal meaning to common sta-

3We note that Lee and Salanie (2020) also use the phrase “filtered treatment effect” in analyzing a cross-sectional
setting with partially observed assignments.
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tistical estimands without resorting to functional form assumptions. Workhorse models in macroe-
conometrics, such as the structural vector moving average, assume linearity. However, this nullifies
state-dependence and asymmetry in dynamic causal effects. Researchers recognize the restrictive-
ness of linearity, yet attempt to weaken it on a case-by-case basis. For example, on the possible
nonlinear effects of oil prices (Killian and Vigfusson, 2011b,a; Hamilton, 2011); on the nonlinear
and state dependent effects of monetary policy (Tenreyro and Thwaites, 2016; Jordá et al., 2020;
Aruoba et al., 2021; Mavroeidis, 2021), and on state-dependent fiscal multipliers (Auerbach and
Gorodnichenko, 2012b,a; Ramey and Zubairy, 2018; Cloyne et al., 2020). Similarly, the direct po-
tential outcome system does not rely on “invertibility” or “recoverability” assumptions about the
assignment and potential outcome processes (Chahrour and Jurado, 2021). Understanding what
can be identified about dynamic causal effects without relying on these assumptions is an active
area (Stock and Watson, 2018; Plagborg-Møller, 2019; Plagborg-Møller and Wolf, 2020; Chahrour
and Jurado, 2021).

Second, a rapidly growing body of empirical research in macroeconometrics attempts to es-
timate dynamic causal efects in settings where researchers directly observe both the assignments
and outcomes, {wobs

t , yobst }t≥1. In this line of work, empirical researchers creatively construct mea-
sures of the underlying economic shocks of interest Wt, and then use these constructed shocks to
directly estimate dynamic causal effects on macroeconomic outcomes using reduced-form meth-
ods such as local projections (Jordá, 2005) or autoregressive distributed lag models (Baek and
Lee, 2021). This line of work has recently been called “direct causal inference” by Nakamura
and Steinsson (2018b) in order to contrast it with the dominant model-based approach to causal
inference in macroeconomics in the tradition of Sims (1980). We refer the reader to Nakamura and
Steinsson (2018b), Goncalves et al. (2021), and Baek and Lee (2021) for recent discussions of this
growing empirical literature in macroeconomics. The direct potential outcome system provides a
causal foundation for such reduced-form methods in time series, elucidating the assumptions that
the constructed shock must satisfy in order for the reduced form estimands to have a nonparametric
causal interpretation.

2.3.1 Examples from Macroeconomics

Many leading causal models in macroeconomics can be cast as special cases of the direct potential
outcome system that place additional restrictions on the potential outcome process.

Example 1 (Structural vector moving average (SVMA) model). The SVMA model is the lead-
ing workhorse model for studying dynamic causal effects in macroeconometrics (e.g., Kilian and
Lutkepohl, 2017; Stock and Watson, 2018). Any infinite-order SVMA model can be expressed
as a direct potential outcome system by assuming that the potential outcome process satisfies the
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functional form restriction

Yt(w1:t) :=
t−1∑
l=0

Θlwt−l + Y ∗t ,

where {Wt}t≥1 is the assignment process, {Θl}0≤l<t is a sequence of lag-coefficient matrices,
and {Y ∗t }t≥1 is a stochastic process that is causally unaffected by the assignment process. In this
sense, the SVMA model imposes that the potential outcome process is linear in the assignment
process. This mapping requires no assumptions on the dimensionality of the assignment process
dw, the dimensionality of the potential outcome process dy, nor the lag-coefficient matrices. As
discussed in Plagborg-Møller and Wolf (2020), such an infinite-order SVMA model is consistent
with all discrete-time Dynamic Stochastic General Equilibrium models as well as all stable, linear
structural vector autoregression (SVAR) models. We further discuss the SVMA model in Section
7. N

Example 2 (Nonlinear structural vector autoregressions (SVAR)). Recent advances in nonlinear
SVARs can also be cast as special cases of the direct potential outcome system. As an illustration,
consider the motivating example in Goncalves et al. (2021), which is a non-linear SVAR of the
form:

Y1,t(w1:t) = w1,t, Y2,t(w1:t) = b+ βY1,t(w1:t) + ρY2,t−1(w1:t−1) + cf(Y1,t(w1:t)) + w2,t,

where f is a nonlinear function. Given a stochastic initial condition Y2,0 := ε2,0 that is causally
unaffected by the assignment process, iterating this system of equations forward arrives at a po-
tential outcome process Y1,t(w1:t) = w1,t, and Y2,t(w1:t) = g2,t(w1:t, ε2,0; θ), where g2,t is a known
function and θ := (b, c, β, ρ) are the parameters. This is a direct potential outcome system where
(1) Y1,t(w1:t) is non-random and only depends on the contemporaneous assignment, (2) the ran-
domness in Y2:t(w1:t) is driven by the initial condition. Other recent examples of nonlinear SVARs
include Aruoba et al. (2021) and Mavroeidis (2021). N

Example 3 (Potential outcome model in Angrist and Kuersteiner (2011), Angrist et al. (2018)).
Angrist and Kuersteiner (2011) and Angrist et al. (2018) introduce a potential outcome model for
time series settings that is a special case of the direct potential outcome system. Using our notation,
Angrist and Kuersteiner (2011) introduce a system of structural equations in which for t ≥ 1,

Y1,t(w1:t) = f1,t(Y1:t−1(w1:t−1), w1,t; ε0), Y2,t(w1:t) = f2,t(Y1,t(w1:t), w2,t, w1:t−1; ε0),

where f1,t, f2,t are deterministic functions and ε0 is a random initial condition. These structural
equations impose that w1:t only impacts Y1,t through w1,t directly and through Y1,t−1 indirectly.
Further, w2,1:t only impacts Y2,t contemporaneously. Related thinking includes White and Kennedy
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(2009) and White and Lu (2010). Through forward iteration of the system starting at t = 1, this can
also be expressed as a direct potential outcome system. In this system of structural equations, the
authors defined the collection of their time-t+h potential outcomes, as {Yt+h(wobs

1:t−1, w,Wt+1:t+h) :

w ∈ WW} and focused on E[Yt+h(wobs
1:t−1, w,Wt+1:t+h) − Yt+h(wobs

1:t−1, w
′,Wt+1:t+h)], which they

called the “average policy effect.” N

Example 4 (Expectations). Macroeconomists often consider how assignments are influenced by
the distribution of future outcomes and how they in turn vary with assignments. For example,
consumers and firms are modelled as forward-looking and so, expectations about future outcomes
influence behavior today. Consider a simple optimization-based version (e.g., Lucas, 1972; Sar-
gent, 1981) in which the assignment process is given by

Wt ∈ arg max
wt

max
wt+1:T

E[ U(Yt:T (wobs
1:t−1, wt:T ), wt:T ) | yobs1:t−1, w

obs
1:t−1], (1)

where U is a utility function of future outcomes and assignments, while Ft−1 is written out in
long hand as yobs1:t−1, w

obs
1:t−1. For each possible wt:T ∈ WT−t+1, the expectation is over the law

of Yt:T (wobs
1:t−1, wt:T )|yobs1:t−1, w

obs
1:t−1. This decision rule delivers the output {Wt, Yt(W1:t)}t≥1. This

looks like a direct potential outcome system since Assumption 2 holds. The assignment Wt could
be a deterministic function of past data if the optimal choice is unique, which would violate As-
sumption 4. However, incorporating noise in the decision rule (1) would deliver a direct potential
outcome system. N

3 Estimands Based on Assignments and Outcomes
In this section, we establish nonparametric conditions under which common statistical estimands
based on assignments and outcomes have causal meaning in the direct potential outcome system
{Wt, {Yt(w1:t) : w1:t ∈ W t}}t≥1, where researchers observe the realized assignments and real-
ized outcomes {wobs

t , yobst }t≥1. We ask if the following statistical estimands have causal meaning:
impulse response function, local projection, generalized impulse response function and the lo-
cal filtered projection. Table 1 defines these estimands and summarizes our main results on their
causal interpretation under important restrictions on the assignment process and other technical
conditions. The rest of this Section spells out the details.

In this section, there is no loss in generality in assuming the outcome Yt+h is univariate. The
more general case is covered by running the analysis equation by equation.

3.1 Impulse Response Function
We begin by determining the conditions under which the unconditional impulse response function

(Sims, 1980) is the h-period ahead average treatment effect. For h ≥ 0 and deterministic wk, w
′
k ∈
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Name Estimand Causal Interpretation
Impulse Response E[Yt+h |Wk,t = wk] E[Yt+h(wk)− Yt+h(w

′
k)];

Function −E[Yt+h |Wk,t = w′k]

Local Projection Cov(Yt+h,Wk,t)
V ar(Wk,t)

∫
Wk

E[Y ′t+h(wk)]E[Gt(wk)]dwk∫
Wk

E[Gt(wk)]dwk

Generalized Impulse E[Yt+h |Wk,t = wk,Ft−1] E[Yt+h(wk)− Yt+h(w
′
k) | Ft−1];

Response Function −E[Yt+h |Wk,t = w′k,Ft−1]

Local Filtered Projection E[{Yt+h−Ŷt+h|t−1}{Wk,t−Ŵk,t|t−1}]
E[{Wk,t−Ŵk,t|t−1}2]

∫
Wk

E[E[Y ′t+h(wk)|Ft−1]E[Gt|t−1(wk)|Ft−1]]dwk∫
Wk

E[Gt|t−1(wk)]dwk

Table 1: Top line results for the causal interpretation of common estimands based on assignments and
outcomes. Here h ≥ 0, wk, w

′
k ∈ Wk, Gt(wk) = 1{wk ≤ Wk,t}(Wk,t − E[Wk,t]) and Gt|t−1(wk) =

1{wk ≤Wk,t}(Wk,t−E[Wk,t | Ft−1]), while Ŷt+h|t−1 := E[Yt+h | Ft−1] and Ŵk,t|t−1 := E[Wk,t | Ft−1].
Note that E[Gt(wk)] ≥ 0 and E[Gt|t−1(wk) | Ft−1] ≥ 0.

Wk, the impulse response function is defined by, if it exists,

IRFk,t,h(wk, w
′
k) := E[Yt+h | Wk,t = wk]− E[Yt+h | Wk,t = w′k]. (2)

IRFk,t,h(wk, w
′
k) can be decomposed into the average treatment effect and a selection bias term.

Theorem 1. Assume a direct potential outcome system, consider some k = 1, . . . , dw, t ≥ 1,

h ≥ 0, fix wk, w
′
k ∈ Wk and that E[|Yt+h(wk)− Yt+h(w′k)|] <∞. Then,

IRFk,t,h(wk, w
′
k) = E[Yt+h(wk)− Yt+h(w′k)] + ∆k,t,h(wk, w

′
k),

where

∆k,t,h(wk, w
′
k) :=

Cov (Yt+h(wk), 1{Wk,t = wk})
E[1{Wk,t = wk}]

− Cov (Yt+h(w′k), 1{Wk,t = w′k})
E[1{Wk,t = w′k}]

.

The impulse response function is therefore equal to the average treatment effect if and only if
the selection bias term ∆k,t,h(wk, w

′
k) = 0. A sufficient condition for this to hold is that the two

covariance terms are zero.
Notice that these covariance terms depend on how the assignment Wk,t covaries with the po-

tential outcome Yt+h(wk). Since Yt+h(wk) := Yt+h(W1:t−1,W1:k−1,t, wk,Wk+1:dW ,t,Wt+1:t+h) by
definition, the selection bias therefore depends on how the assignment Wk,t relates to

1. past assignments W1:t−1,

2. other contemporaneous assignments W1:k−1,t,Wk+1:dW ,t,

3. future assignments Wt+1:t+h, and
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4. the potential outcome process Yt+h(w1:t+h).

By placing further restrictions on the assignment process, we immediately arrive at sufficient con-
ditions for ∆k,t,h(wk, w

′
k) to be zero.

Theorem 2. Under the same conditions as Theorem 1, if

Cov (Yt+h(wk), 1{Wk,t = wk}) = 0, Cov (Yt+h(w′k), 1{Wk,t = w′k}) = 0 (3)

then ∆k,t,h(wk, w
′
k) = 0. Moreover, (3) is satisfied if

Wk,t ⊥⊥ Yt+h(wk), and Wk,t ⊥⊥ Yt+h(w′k), (4)

which is in turn implied by

Wk,t ⊥⊥ {Yt+h(wk) : wk ∈ Wk}, (5)

which is in turn implied by

Wk,t ⊥⊥
(
W1:t−1,W1:k−1,t,Wk+1:dW ,t,Wt+1:t+h, {Yt+h(w1:t+h) : w1:t+h ∈ W t+h}

)
. (6)

Equation (6) says the selection bias is zero if the assignment Wk,t is randomized in the sense that
it is independent of all other assignments and the time-(t+ h) potential outcomes.

Recent reviews on dynamic causal effects in macroeconometrics by Ramey (2016) and Stock
and Watson (2018) argue intuitively that the impulse response function of observed outcomes to
“shocks” in parametric structural models, such as the SVMA, are analogous to an average treat-
ment effect in a randomized experiment from cross-sectional causal inference.4 However, these
statements rely on either intuitive descriptions of the statistical properties of shocks5, or on a spe-
cific parametric model for the potential outcome process to link the impulse response function to
an average dynamic causal effect. Theorem 2 clarifies that if the assignment Wk,t is randomly
assigned in these sense of (6), then the impulse response function nonparametrically identifies an
average treatment effect in the direct potential outcome system. In this sense, Theorem 2 pro-
vides an interpretation of “shock” in terms of a random assignment assumption on the assignment
process in a direct potential outcome system.

4Stock and Watson (2018) write on pg. 922: “The macroeconometric jargon for this random treatment is a ’struc-
tural shock:’ a primitive, unanticipated economic force, or driving impulse, that is unforecastable and uncorrelated
with other shocks. The macroeconomist’s shock is the microeconomists’ random treatment, and impulse response
functions are the causal effects of those treatments on variables of interest over time, that is, dynamic causal effects.”

5Ramey (2016) writes on pg. 75, “the shocks should have the following characteristics: (1) they should be exoge-
nous with respect to the other current and lagged endogenous variables in the model; (2) they should be uncorrelated
with other exogenous shocks; otherwise, we cannot identify the unique causal effects of one exogenous shock relative
to another; and (3) they should represent either unanticipated movements in exogenous variables or news about future
movements in exogenous variables.”
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Furthermore, Theorems 1-2 clarifies a recent empirical literature that seeks to directly construct
measures of the shocks of interest and measure dynamic causal effects through reduced-form esti-
mates of impulse response functions — so called “direct causal inference” (e.g., see Nakamura and
Steinsson, 2018b; Baek and Lee, 2021). In order for researchers to causally interpret reduced-form
impulse response functions of outcomes on particular constructed shocks as nonparametrically
identifying an average treatment effect, then the constructed shocks must be randomized in these
sense given in Theorem 2.

3.2 Local Projection Estimand
Under the conditions of Theorem 1, impulse response functions are causal, but nonparametrically
estimating impulse response functions is in general challenging. If the assignment is observed
by the researcher, it is therefore common to estimate impulse response functions using “local
projections” (Jordá, 2005), which directly regresses the h-step ahead outcome on a constant and
the assignment. The corresponding local projection estimand is

LPk,t,h :=
Cov(Yt+h,Wk,t)

V ar(Wk,t)
. (7)

Theorem 3 establishes that LPk,t,h identifies a weighted average of marginal causal effects of the
assignment on the h-step ahead outcome.

Theorem 3. Under the same conditions as Theorem 1, further assume that:

i. The support of Wk,t is a closed interval,Wk := [wk, wk] ⊂ R.

ii. Differentiability: Yt+h(wk) is continuously differentiable in wk, as is E[Y ′t+h(wk)].

iii. Independence: Wk,t ⊥⊥ {Yt+h(wk) : wk ∈ Wk}.

Then, if it exists,

LPk,t,h =

∫
Wk

E[Y ′t+h(wk)]E[Gt(wk)]dwk∫
Wk

E[Gt(wk)]dwk

,

where Gt(wk) = 1{wk ≤ Wk,t}(Wk,t − E[Wk,t]), noting E[Gt(wk)] ≥ 0.

The local projection estimandLPk,t,h is therefore a weighted average of marginal average treatment
effects of Wk,t on the Yt+h, where the weights E[Gt(wk)] are non-negative and sum to one. Thus,
if the assignment Wk,t is a shock in the sense stated in Theorem 2, the local projection estimand
also has a nonparametric causal interpretation.
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3.3 Generalized Impulse Response Function
In non-linear time series models, it is common to focus on the conditional version of the impulse
response function, the h-period ahead generalized impulse response function (Gallant et al., 1993;
Koop et al., 1996; Gourieroux and Jasiak, 2005), which is

GIRFk,t,h(wk, w
′
k | Ft−1) := E[Yt+h | Wk,t = wk,Ft−1]− E[Yt+h | Wk,t = w′k,Ft−1]. (8)

Mirroring our analysis of the impulse response function, we next show that GIRFk,t,h can be
decomposed into the filtered treatment effect and a selection bias term.

Theorem 4. Assume a direct potential outcome system, some k = 1, . . . , dw, t ≥ 1, and h ≥ 0

and that E[|Yt+h(wk)− Yt+h(w′k)| | Ft−1] <∞. Then, for any deterministic wk, w
′
k ∈ W ,

GIRFk,t,h(wk, w
′
k | Ft−1) = E[{Yt+h(wk)− Yt+h(w′k)} | Ft−1] + ∆k,t,h(wk, w

′
k | Ft−1),

where

∆k,t,h(wk, w
′
k | Ft−1) :=

Cov (Yt+h(wk), 1{Wk,t = wk} | Ft−1)

E[1{Wk,t = wk} | Ft−1]
−Cov (Yt+h(w′k), 1{Wk,t = w′k} | Ft−1)

E[1{Wk,t = w′k} | Ft−1]
.

Sufficient conditions for the selection bias term ∆k,t,h(wk, w
′
k | Ft−1) to equal zero is that

the two conditional covariances are zero. Repeating the unconditional case, Theorem 5 provides
sufficient conditions such that the selection bias term is equal to zero.

Theorem 5. Under the same conditions as Theorem 4, if

Cov (Yt+h(wk), 1{Wk,t = wk} | Ft−1) = 0, Cov (Yt+h(w′k), 1{Wk,t = w′k} | Ft−1) = 0, (9)

then ∆k,t,h(wk, w
′
k) = 0. Moreover, (9) is implied by

Wk,t ⊥⊥ Yt+h(wk) | Ft−1, and Wk,t ⊥⊥ Yt+h(w′k) | Ft−1, (10)

which is in turn implied by

[Wk,t ⊥⊥ {Yt+h(wk) : wk ∈ Wk}] | Ft−1, (11)

which is in turn implied by

[Wk,t ⊥⊥
(
W1:k−1,t,Wk+1:dW ,t,Wt+1:t+h, {Yt+h(wobs

1:t−1, wt:t+h) : wt:t+h ∈ Wh+1}
)
] | Ft−1. (12)
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Therefore, under (9), the selection bias ∆k,t,h(wk, w
′
k | Ft−1) = 0 and the generalized impulse

response function identifies the filtered impulse causal effect. Notice how much weaker (12) is
than (6) as it allows the assignment to probabilistically depend flexibly on the past realised potential
outcomes and realised assignments.

At first glance, (11) appears analogous to a typical unconfoundedness assumption from cross-
sectional causal inference or sequential randomization assumption from longitudinal causal infer-
ence. That is, it imposes that conditional on the history up to time t− 1, the assignment Wk,t must
be as good as randomly assigned. However, recall that the notation Yt+h(wk) buries dependence on
(i) other contemporaneous assignments W1:k−1,t,Wk+1:dW ,t; (ii) future assignments Wt+1:t+h; and
(iii) the potential outcomes at time-(t+h). Therefore, (12) in Theorem 5 provides further sufficient
conditions under which (11) is satisfied, highlighting that it is sufficient to further impose that the
assignment Wk,t is jointly independent of all other contemporaneous and future assignments as
well as the underlying potential outcomes.

Remark 3. How do the conditions in Theorem 2 relate to the conditions in Theorem 5? Applying

the law of total covariance yields

Cov(Yt+h(wk), 1{Wk,t = wk}) = E[Cov(Yt+h(wk), 1{Wk,t = wk} | Ft−1)]

+ Cov(E[Yt+h(wk) | Ft−1],E[1{Wk,t = wk} | Ft−1]),

so Cov(Yt+h(wk), 1{Wk,t = wk}) = 0 neither implies or is implied by Cov(Yt+h(wk), 1{Wk,t =

wk} | Ft−1)] = 0. Hence, the conditional and unconditional cases are non-nested. If we instead

work probabilistically, then the condition

Wk,t ⊥⊥
(
W1:t−1,W1:k−1,t,Wk+1:dW ,t,Wt+1:t+h, {Y1:t+h(w1:t+h) : w1:t+h ∈ W t+h}

)
,

which strengthens (6) to additionally require independence of the full potential outcome process,

implies the condition (12). This second point is important practically. The generalized impulse

response function tells us the filtered treatment effect provided that [Wk,t ⊥⊥ {Yt+h(wk) : wk ∈
Wk}] | Ft−1. A temporally averaged generalized impulse response function therefore tells us the

average treatment effect without the need to employ the harsher condition [Wk,t ⊥⊥ {Yt+h(wk) : wk ∈
Wk}] as it sidesteps the use of the impulse response function.

3.4 Generalized Local Projection and Local Filtered Projection Estimands
Again estimating generalized impulse response functions nonparametrically is challenging. Under
the same conditions as Theorem 3 but replacing condition (iii) with Equation (11), the generalized
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local projection satisfies

Cov(Yt+h,Wk,t | Ft−1)

V ar(Wk,t | Ft−1)
=

∫
Wk

E[Y ′t+h(wk) | Ft−1]E[Gt|t−1(wk) | Ft−1]dwk∫
Wk

E[Gt|t−1(wk) | Ft−1]dwk

,

where Gt|t−1(wk) = 1{wk ≤ Wk,t}(Wk,t − E[Wk,t | Ft−1]), noting E[Gt|t−1(wk) | Ft−1] ≥ 0. The
generalized local projection is equivalent to a weighted average of conditional average marginal
effects of Wk,t on Yt+h, where the weights now depend on the natural filtration but still are non-
negative and sum to one.

Of more practical importance, is the local projection of Yt+h − Ŷt+h|t−1 on Wk,t − Ŵk,t|t−1,
where Ŷt+h|t−1 := E[Yt+h | Ft−1] and Ŵk,t|t−1 := E[Wk,t | Ft−1]. We call the associated estimand
the local filtered projection, which is defined as

E[{Yt+h − Ŷt+h|t−1}{Wk,t − Ŵk,t|t−1}]
E[{Wk,t − Ŵk,t|t−1}2]

.

Under the same conditions as needed for the generalized local projection plus needing the uncon-
ditional expectations to exist, the local filtered projection estimand equals∫

Wk
E
[
E[Y ′t+h(wk) | Ft−1]E[Gt|t−1(wk) | Ft−1]

]
dwk∫

Wk
E[Gt|t−1(wk)]dwk

,

This is a long-run weighted average of the marginal filtered causal effect. The weights are non-zero
and average to one over time.

4 The Instrumented Potential Outcome System
We now use a special case of the direct potential outcome system to incorporate instrumental vari-
ables for the assignment process. This is useful as a rapidly growing literature in macroeconomics
exploits the use of instruments to identify dynamic causal effects (e.g., see Jordá et al., 2015;
Gertler and Karadi, 2015; Ramey and Zubairy, 2018; Stock and Watson, 2018; Plagborg-Møller
and Wolf, 2020; Jordá et al., 2020, among many others). Section 5 details the case where the
researcher observes the assignments, the instruments, and the outcomes. Section 6 considers the
case where only the instruments and the outcomes are observed.

4.1 The Instrumented System
We start by setting up an “augmented assignment” Vt, so that {Vt, {Yt(v1:t) : v1:t ∈ W t

V }}t≥1 is a
direct potential outcome system.

The instrumented potential outcome system then imposes two further assumptions on the po-
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tential outcome system: (i) that {Vt}t≥1 splits into an “instrument” {Zt}t≥1 and a “potential assign-
ment” {Wt(zt) : zt ∈ W t

Z}t≥1 that is only causally affected by the contemporaneous instrument,
meaning Vt = (Zt,Wt(Zt)); (ii) the potential outcome process is only affected by the assignment
W1:t.

Definition 4 (Instrumented potential outcome system). Assume Wt ∈ WW , Zt ∈ WZ and write

Vt = (Wt, Zt). Assume {Vt, {Yt(v1:t) : v1:t ∈ W t
W ×W t

Z}}t≥1 is a direct potential outcome sys-

tem. Additionally, enforce three Assumptions:

i. Contemporaneous Instrument: The “potential assignments” satisfy

Wk,t({zs}s≥1) = Wk,t(z
′
1:t−1, zt, {z′s}s≥t+1)

W1:k−1,t({zs}s≥1) = W1:k−1,t({z′s}s≥1)

Wk+1:dW ,t({zs}s≥1) = Wk+1:dW ,t({z′s}s≥1)

almost surely, for all t ≥ 1 and all deterministic {zt}t≥1 and {z′t}t≥1. Write the potential

assignments as {Wt(zt) = (W1:k−1,t,Wk,t(zt),Wk+1:dW ,t) : zt ∈ WZ}, while the assignment

is Wt = Wt(Zt) = (W1:k−1,t,Wk,t(Zt),Wk+1:dW ,t).

ii. Potential Outcome Exclusion:

Yt((w1, z1) , ..., (wt, zt)) = Yt((w1, z
′
1) , ..., (wt, z

′
t))

almost surely for all w1:t ∈ W t
W and z1:t, z

′
1:t ∈ W t

Z . Write the potential outcomes as

{Yt(w1:t) : w1:t ∈ W t
W} and outcome as Yt = Yt(W1:t).

iii. Output: The output is

{Zt,Wt, Yt}t≥1 = {Zt,Wt(Zt), Yt(W1:t)}t≥1,

while Zt and {Zt}t≥1 are called the “contemporaneous instrument,” and instrument process,

respectively.

Any {Zt, {Wt(zt), zt ∈ WZ}, {Yt(w1:t), w1:t ∈ W t
W}}t≥1 satisfying (i)-(iii) is an instrumented

potential outcome system.

The simplest case is when both the assignment and instrument are scalar and binary, WW =

{0, 1},WZ = {0, 1}. In this case, the instrument Zt = 1 corresponds to “intention to treat” and
Zt = 0 is “intention to control.” There is treatment and control as intended when Wt(1) = 1 and
Wt(0) = 0. But there can be noncompliance when Wt(1) = 0 and Wt(0) = 1.
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Assumption (i) imposes that Zt is only an instrument for the time-t, k-th assignment. This
formalizes common empirical intuition in macroeconometrics where a constructed external instru-
ment is often “targeted” towards a single economic shock of interest – for example, empirical
researchers construct proxies for a monetary policy shock (e.g., Gertler and Karadi, 2015; Naka-
mura and Steinsson, 2018a; Jordá et al., 2020) or a fiscal policy shock (Ramey and Zubairy, 2018).
Assumption (ii) is the familiar outcome exclusion restriction on the instrument from cross-sectional
causal inference.

To use this structure, we also need a type of “relevance” condition on the instrument. Such
conditions will be stated as needed below.

5 Estimands Based on Assignments, Instruments and Outcomes
We now study the conditions under which leading statistical estimands based on assignments, in-
struments and outcomes have causal meaning in the context of an instrumented potential outcome
system {Zt, {Wt(zt), zt ∈ WZ}, {Yt(w1:t), w1:t ∈ W t

W}}t≥1. We consider the case in which re-
searcher observes the instruments, the assignments, and the outcomes {zobst , wobs

t , yobst }t≥1.
Since the assignments themselves are assumed to be directly observable, we focus on dynamic

IV estimands that involve taking the ratio of an impulse response function of the outcome on the
instrument relative to the impulse response function of the assignment on the instrument. We show
that such dynamic IV estimands identify local average impulse causal effects in the sense of Imbens
and Angrist (1994), Angrist et al. (1996), and Angrist et al. (2000). Our results in this section are
most closely related to Jordá et al. (2020), who used a potential outcome model analogous to that
introduced in Angrist et al. (2018), to understand the causal content of local projection-IV with a
binary assignment and binary instrument.

In particular, we ask if the following statistical estimands have causal meaning: the Wald
estimand, the IV estimand, the generalized Wald estimand, and the filtered IV estimand. Table
2 defines these estimands and summarizes our main results on their causal interpretation under
important restrictions on the assignment process and other technical conditions. The rest of this
Section spells out the details.

5.1 Wald Estimand
Consider the classic Wald estimand

E[Yt+h | Zt = z]− E[Yt+h | Zt = z′]

E[Wk,t | Zt = z]− E[Wk,t | Zt = z′]
.

The numerator is the impulse response of the outcome Yt+h on the instrument Zt, which can be
thought of as the “reduced-form.” The denominator is the impulse response function of the as-

19



Name Estimand Causal Interpretation

Wald E[Yt+h|Zt=z]−E[Yt+h|Zt=z′]
E[Wk,t|Zt=z]−E[Wk,t|Zt=z′]

∫
W E[Y ′t+h(wk)|Ht(wk)=1]E[Ht(wk)]dwk∫

W E[Ht(wk)]dwk

IV Cov(Yt+h,Zt)

Cov(Wt,Zt)

∫
WZ

E[Y ′t+h(zt)]E[Gt(zt)]dzt∫
WZ

E[W ′t (zt)]E[Gt(zt)]dzt

Generalized E[Yt+h|Zt=z,Ft−1]−E[Yt+h|Zt=z′,Ft−1]

E[Wk,t|Zt=z,Ft−1]−E[Wk,t|Zt=z′,Ft−1]

∫
W E[Y ′t+h(wk)|Ht(wk)=1,Ft−1]E[Ht(wk)|Ft−1]dwk∫

W E[Ht(wk)|Ft−1]dwk

Wald

Filtered IV E[(Yt+h−Ŷt+h|t−1)(Zt−Ẑt|t−1)]

E[(Wk,t−Ŵk,t|t−1)(Zt−Ẑt|t−1)]

∫
WZ

E[E[Y ′t+h(zt)|Ft−1]E[Gt(zt)|Ft−1]]dzt∫
WZ

E[E[W ′t (zt)|Ft−1]E[Gt(zt)|Ft−1]]dzt

Table 2: Top line results for the causal interpretation of common estimands based on as-
signments, instruments and outcomes. Here h ≥ 0, z, z′ ∈ WZ , Yt+h(zt) :=
Yt+h(W1:t−1,Wt,1:k−1,Wk(zt),Wt,k+1:dW ,Wt+1:t+h), Y ′t+h(zt) := ∂Yt+h(zt)/∂zt, Ht(wk) =
1{Wk,t(z

′) ≤ wk ≤Wk,t(z)}, Gt(zt) = 1{zt ≤ Zt}(Zt−E[Zt]) and Gt|t−1(zt) = 1{zt ≤ Zt}(Zt−E[Zt] |
Ft−1]), while Ŷt+h|t−1 = E[Yt+h | Ft−1], Ẑt|t−1 = E[Zt | Ft−1] and Ŵk,t|t−1 = E[Wk,t | Ft−1]. Note that
E[Gt(zt)] ≥ 0 and E[Gt|t−1(zt) | Ft−1] ≥ 0.

signment Wk,t on the instrument Zt, which can be thought of as the “first-stage.” Our next result
establishes that the Wald estimand identifies a weighted average of marginal causal effects for
“compliers” provided that (i) the potential outcome process is continuously differentiable in the
assignment; (ii) the instrument is independent of the potential assignment and outcome processes;
(iii) is a relevance condition; (iv) satisfies a monotonicity condition as introduced in Imbens and
Angrist (1994).

Theorem 6. Assume an instrumented potential outcome system, fix z, z′ ∈ WZ and that

i. Differentiability: Yt+h(wk) is continuously differentiable in the closed interval wk ∈ Wk :=

[wk, wk] ⊂ R.

ii. Independence: The instrument satisfiesZt ⊥⊥ {Wk,t(z) : z ∈ WZ} andZt ⊥⊥ {Yt+h(wk) : wk ∈
Wk}.

iii. Relevance:
∫
W E[1{Wk,t(z

′) ≤ wk ≤ Wk,t(z)}]dwk > 0.

iv. Monotonicity: Wk,t(z
′) ≤ Wk,t(z) with probability one.

Then, Wald estimand equals, so long as it exists,∫
W E[Y ′t+h(wk)|Ht(wk) = 1]E[Ht(wk)]dwk∫

W E[Ht(wk)]dwk

,

where Ht(wk) = 1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)}.
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Provided the instrument is randomly assigned, relevant, and satisfies a monotonicity condition,
then the Wald estimand equals a weighted average of the marginal causal effects for “compliers”
(i.e., realizations of the potential assignment function for which moving the instrument from z′ to z
changes the assignment). The marginal causal effect is the derivative of the h-step ahead potential
outcome process with respect to the k-th assignment, holding all else constant. The weights are
proportional to the probability of the potential assignment function being a “complier,” so are
non-negative and sum to one.

Since Yt+h(wk) := Yt+h(W1:t−1,W1:k−1,t, wk,Wk+1:dW ,t,Wt+1:t+h), Assumption (ii) implicitly
restricts the relationship between the instrument Zt and:

1. other assignments W1:k−1,1:t+h,Wk+1:dW ,1:t+h,

2. future and past potential assignments {Wk,1:t−1(z1:t−1),Wk,t+1:t+h(zt+1:t+h) : z1:t−1 ∈ Z t, zt+1:t+h ∈
Zh},

3. future and past instruments Z1:t−1 and Zt+1:t+h, and

4. the potential outcome process {Yj,t+h(w1:t+h) : w1:t+h ∈ W t+h}.

We could extend Theorem 2 to the instrumented potential outcome system, and show that Assump-
tion (ii) is implied by restricting the instrument Zt to be independent of each of these quantities.

Remark 4 (Binary Assignment, Binary Instrument Case). Consider the simplest case with Wk,t ∈
{0, 1}, Zt ∈ {0, 1} and z = 1, z′ = 0. Although the math is different due to the discreteness of the

assignment and instrument, under the same conditions as Theorem 8, we can show that the Wald

estimand in this case equals

E[{Yt+h(1)− Yt+h(0)} | Wk,t(1)−Wk,t(0) = 1],

which is the time-series generalization of the binary assignment, binary instrument local average

treatment effect originally derived in Imbens and Angrist (1994).

5.2 IV Estimand
Rather than directly estimating the Wald estimand, it is natural to estimate a two-stage least squares
regression of the outcome Yt+h on the assignment Wk,t using the instrument Zt. The associated IV
estimand is

IVk,t,h :=
Cov(Yt+h, Zt)

Cov(Wt, Zt)
.

This has a causal interpretation by applying Theorem 3 for the local projection estimand on both
the numerator for the local projection of Yt+h on Zt and the denominator for the local projection
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of Wt on Zt. The statement of the results uses the notation

Yt+h(zt) := Yt+h(W1:t−1,Wt,1:k−1,Wk(zt),Wt,k+1:dW ,Wt+1:t+h),

and Y ′t+h(zt) := ∂Yt+h(zt)/∂zt.

Theorem 7. Assume an instrumented potential outcome system. Further assume that

i. Differentiability: Yt+h(z) and that Wt(z) are continuously differentiable in the closed inter-

val z ∈ WZ = [z, z] ⊂ R.

ii. Independence: Zt ⊥⊥ {Wt(z) : z ∈ WZ}, Zt ⊥⊥ {Yt+h(z) : z ∈ WZ},

iii. Relevance:
∫
WZ

E[W ′
t(zt)]E[Gt(zt)]dzt 6= 0.

Then, it follows, if it exists, that

IVk,t,h =

∫
WZ

E[Y ′t+h(zt)]E[Gt(zt)]dzt∫
WZ

E[W ′
t(zt)]E[Gt(zt)]dzt

where Gt(zt) = 1{zt ≤ Zt}(Zt − E[Zt]), noting E[Gt(zt)] ≥ 0.

5.3 Generalized Wald Estimand
The generalized Wald estimand is a ratio of a reduced-form generalized impulse response function
to a first-stage generalized impulse response function. It is given by, for fixed z, z′ ∈ WZ ,

E[Yt+h | Zt = z,Ft−1]− E[Yt+h | Zt = z′,Ft−1]

E[Wk,t | Zt = z,Ft−1]− E[Wk,t | Zt = z′,Ft−1]
. (13)

Theorem 8. Assume an instrumented potential outcome system, fix z, z′ ∈ WZ and that

i. Differentiability: Yt+h(wk) is continuously differentiable in the closed interval wk ∈ Wk :=

[wk, wk] ⊂ R.

ii. Independence: The instrument satisfies [Zt ⊥⊥ {Wk,t(z) : z ∈ WZ}] | Ft−1 and [Zt ⊥⊥
{Yt+h(wk) : wk ∈ Wk}] | Ft−1.

iii. Relevance:
∫
W E[1{Wk,t(z

′) ≤ wk ≤ Wk,t(z)} | Ft−1]dwk > 0.

iv. Monotonicity: Wk,t(z
′) ≤ Wk,t(z) with probability one.

Then, the generalized Wald estimand equals, so long as it exists,∫
W E[Y ′t+h(wk) | Ht(wk) = 1,Ft−1]E[Ht(wk) | Ft−1]dwk∫

W E[Ht(wk) | Ft−1]dwk

,
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where, again, Ht(wk) = 1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)}.

The generalized Wald estimand analogously equals a weighted average of the marginal filtered
causal effects for “compliers,” where the weights are proportional to the probability of the potential
assignment function being a “complier” conditional on the filtration.

We next provide a sufficient condition for the instrument to be randomly assigned in terms of
conditional independence restrictions on these underlying processes.

Theorem 9. Assume that the instrument satisfies

Zt ⊥⊥
(
Zt+1:t+h,W1:k−1,t:t+h, {Wk,t+1:t+h(zt+1:t+h) : zt+1:t+h ∈ Zh},Wk+1:dW ,t:t+h,{

Yt+h(w1:t+h) : w1:t+h ∈ W t+h}
)
| Ft−1.

Then, Assumption (ii) in Theorem 8 is satisfied.

5.4 Generalized IV and Filtered IV Estimands
Estimating generalized Wald estimand is not easy, particularly if Zt is not discrete. Here we derive
a causal interpretation for generalized IV estimand

Cov(Yt+h, Zt | Ft−1)

Cov(Wk,t, Zt | Ft−1)
=

E[(Yt+h − Ŷt+h|t−1)(Zt − Ẑt|t−1) | Ft−1]

E[(Wk,t − Ŵk,t|t−1)(Zt − Ẑt|t−1) | Ft−1]
.

where Ŷt+h|t−1 = E[Yt+h | Ft−1], Ŵk,t|t−1 = E[Wk,t | Ft−1] and Ẑt|t−1 = E[Zt | Ft−1].
No new technical issues arise in dealing with this setup, but Assumption (ii) in Theorem 7 now

becomes

[Zt ⊥⊥ {Yt+h(z) : z ∈ WZ}] | Ft−1, [Zt ⊥⊥ {Wt(z) : z ∈ WZ}] | Ft−1. (14)

Then, the generalized IV estimand equals∫
WZ

E[Y ′t+h(zt) | Ft−1]E[Gt|t−1(zt) | Ft−1]dzt∫
WZ

E[W ′
t(zt) | Ft−1]E[Gt|t−1(zt) | Ft−1]dzt

where Gt|t−1(zt) = 1{zt ≤ Zt}(Zt − E[Zt | Ft−1]), noting E[Gt|t−1(zt) | Ft−1] ≥ 0.
Of more practical importance is the filtered IV estimand

E[(Yt+h − Ŷt+h|t−1)(Zt − Ẑt|t−1)]

E[(Wk,t − Ŵk,t|t−1)(Zt − Ẑt|t−1)],
,

which can be estimated by instrumental variables applied to Yt+h− Ŷt+h|t−1 onWk,t−Ŵk,t|t−1 with
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instruments Zt − Ẑt|t−1. Under the conditions of Theorem 7 but using (14) instead of Assumption
(ii), then the filtered IV estimand becomes∫

WZ
E[E[Y ′t+h(zt) | Ft−1]E[Gt|t−1(zt) | Ft−1]]dzt∫

WZ
E[E[W ′

t(zt) | Ft−1]E[Gt|t−1(zt) | Ft−1]]dzt
.

6 Estimands Based on Instruments and Outcomes
In this section, we study the nonparametric conditions under which common statistical estimands
based on only instruments and outcomes have causal meaning. We focus on an instrumented
potential outcome system

{Zt, {Wt(zt), zt ∈ WZ}, {Yt(w1:t), w1:t ∈ W t
W}}t≥1,

in which the researcher only observes the instruments and the outcomes {zobst , yobst }t≥1. We will
sometimes refer to {FZ,Y

t }t≥1 as the natural filtration generated by the realized {zobst , yobst }t≥1.
In this context, it is common for empirical researchers to analyze estimands involving two

elements of the outcome vector Yj,t+h, Yk,t and the instrument Zt (therefore, we return to using
a explicit subscript on the outcome variable). Consider, for example, an empirical researcher
that constructs an instrument Zt for the monetary policy shock (e.g., an instrument of the form
used in Kuttner (2001); Cochrane and Piazessi (2002); Gertler and Karadi (2015) or Romer and
Romer (2004)). In this case, the empirical researcher may measure the dynamic causal effect of the
monetary policy shockWk,t on unemployment Yj,t+h by estimating the first-stage impulse response
function of the federal funds rate Yk,t on the instrument Zt. See, for example, Jordá et al. (2015);
Ramey and Zubairy (2018); Jordá et al. (2020) for recent empirical applications of this empirical
strategy.

In particular, we ask if the following estimands have causal meaning: Ratio Wald, Local Pro-
jection IV, generalized Ratio Wald, and the local filtered projection IV. We show that such dynamic
IV estimands identify “relative” local average impulse causal effect, which is a nonparametrically
generalization of the interpretation of such a dynamic IV estimand in existing literature on external
instruments (Stock and Watson, 2018; Plagborg-Møller and Wolf, 2020; Jordá et al., 2020). Table
3 defines these estimands and summarizes our main results on their causal interpretation under
important restrictions on the assignment process and other technical conditions. The rest of this
Section spells out the details.
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Name Estimand Causal Interpretation

Ratio Wald E[Yj,t+h|Zt=z]−E[Yj,t+h|Zt=z′]
E[Yk,t|Zt=z]−E[Yk,t|Zt=z′]

∫
W E[Y ′j,t+h(wk)|Ht(wk)=1]E[Ht(wk)]dwk∫
W E[Y ′k,t(wk)|Ht(wk)=1]E[Ht(wk)]dwk

Local Projection Cov(Yj,t+h,Zt)
Cov(Yk,t,Zt)

∫
WZ

E[Y ′j,t+h(zk)]E[Gt(zk)]dzk∫
WZ

E[Y ′k,t(zk)]E[Gt(zk)]dzk

IV

Generalized Ratio
E[Yj,t+h|Zt=z,FZ,Y

t−1 ]−E[Yj,t+h|Zt=z′,FZ,Y
t−1 ]

E[Yk,t|Zt=z,FZ,Y
t−1 ]−E[Yk,t|Zt=z′,FZ,Y

t−1 ]

∫
W E[Y ′j,t+h(wk)|Ht(wk)=1,FZ,Y

t−1 ]E[Ht(wk)|FZ,Y
t−1 ]dwk∫

W E[Y ′k,t(wk)|Ht(wk)=1,FZ,Y
t−1 ]E[Ht(wk)|FZ,Y

t−1 ]dwk

Wald

Local Filtered Cov(Yj,t+h−Ŷj,t+h|t−1,Zt−Ẑt|t−1)

Cov(Yk,t−Ŷk,t|t−1,Zt−Ẑt|t−1)

∫
WZ

E[E[Y ′j,t+h(zk)|F
Z,Y
t−1 ]E[Gt(zk)|FZ,Y

t−1 ]]dzk∫
WZ

E[E[Y ′k,t(zk)|F
Z,Y
t−1 ]E[Gt(zk)|FZ,Y

t−1 ]]dzk

Projection IV

Table 3: Top line results for the causal interpretation of common estimands based on instruments and
outcomes. Here Ht(wk) = 1{Wk,t(z

′) ≤ wk ≤ Wk,t(z)}, Gt(zt) = 1{zt ≤ Zt}(Zt − E[Zt]) and
Gt|t−1(zt) = 1{zt ≤ Zt}(Zt − E[Zt | FZ,Y

t−1 ), while Ŷk,t+h|t−1 = E[Yk,t+h | FZ,Y
t−1 ] and Ẑt|t−1 = E[Zt |

FZ,Y
t−1 ]. Note that E[Gt(zt)] ≥ 0 and E[Gt|t−1(zt) | F

Z,Y
t−1 ] ≥ 0.

6.1 Ratio Wald Estimand
The Ratio Wald Estimand

E[Yj,t+h | Zt = z]− E[Yj,t+h | Zt = z′]

E[Yk,t | Zt = z]− E[Yk,t | Zt = z′]
,

which is the ratio of the Wald estimands:

E[Yj,t+h | Zt = z]− E[Yj,t+h | Zt = z′]

E[Wk,t | Zt = z]− E[Wk,t | Zt = z′]
, to

E[Yk,t | Zt = z]− E[Yk,t | Zt = z′]

E[Wk,t | Zt = z]− E[Wk,t | Zt = z′]
.

Hence we just need to collect the conditions for the validity of their causal representations, and
then apply Theorem 6 twice.

Corollary 1. Assume an instrumented potential outcome system, z, z′ ∈ WZ and that

i. Differentiability: Yk,t(wk), Yj,t+h(wk) are continuously differentiable in closed intervalWk :=

[wk, wk] ⊂ R.

ii. Independence: Zt ⊥⊥ {Wk,t(z) : z ∈ WZ} and Zt ⊥⊥ {Yk,t(wk), Yj,t+h(wk) : wk ∈ Wk}.

iii. Relevance:
∫
W E[Y ′k,t(wk) | Ht(wk) = 1]E[Ht(wk)]dwk 6= 0.

iv. Monotonicity: Wk,t(z
′) ≤ Wk,t(z) with probability one.
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Then, the Ratio Wald Estimand equals, if it exists,∫
W E[Y ′k,t+h(wk) | Ht(wk) = 1]E[Ht(wk)]dwk∫
W E[Y ′k,t(wk) | Ht(wk) = 1]E[Ht(wk)]dwk

,

where Ht(wk) = 1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)}.

In words, the ratio Wald estimand above identifies a relative local average impulse causal
effect under the instrumented potential outcome system. The numerator is a weighted average
of the marginal causal effects of Wk,t on the h-step ahead outcome Yj,t+h, where the weights are
proportional to the probability of compliance. Similarly, the denominator is a weighted average
of the marginal causal effects of Wk,t on the contemporaneous outcome Yk,t. Therefore, the ratio
in Corollary 1 measures the causal response of the h-step ahead outcome Yj,t+h to a change in the
treatment Wk,t that increases the contemporaneous outcome Yk,t by one unit on impact (among
compliers).

This is a nonparametric generalization of the well-known result that in linear SVMA models
(without invertibility) the IV based estimands identify relative impulse response functions (Stock
and Watson, 2018; Plagborg-Møller and Wolf, 2020). Corollary 1 makes no functional form as-
sumptions nor standard time series assumptions such as invertibility or recoverability. In this
sense, Corollary 1 highlights the attractiveness of using external instruments to measure dynamic
causal effects in observational time series data. Provided there exists an external instrument for the
treatment Wk,t that is randomly assigned, relevant and satisfies a monotonicity condition, then the
researcher can identify causally interpretable estimands without further assumptions and without
even directly observing the treatment itself.

6.2 Local Projection IV Estimand
The local projection IV estimand

Cov(Yj,t+h, Zt)

Cov(Yk,t, Zt)
,

is the ratio of the IV estimands Cov(Yj,t+h,Zt)

Cov(Wt,Zt)
to Cov(Yk,t,Zt)

Cov(Wt,Zt)
. Therefore, we once again just need to

collect the conditions for the validity of their causal representations, and apply Theorem 7 twice.

Corollary 2. Consider an instrumented potential outcome system. Further assume that

i. Differentiability: Yj,t(z), Yk,t+h(z),Wt(z) are continuously differentiable in the closed inter-

val z ∈ WZ = [z, z] ⊂ R.

ii. Independence: Zt ⊥⊥ {Yk,t(z), Yj,t+h(z) : z ∈ WZ} and Zt ⊥⊥ {Wt(z) : z ∈ WZ}.

iii. Relevance:
∫
WZ

E[Y ′k,t(zt)]E[Gt(zt)]dzt 6= 0.
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Then, the local projection IV estimand equals∫
WZ

E[Y ′j,t+h(zk)]E[Gt(zk)]dzk∫
WZ

E[Y ′k,t(zk)]E[Gt(zk)]dzk
,

where Gt(zk) = 1{zk ≤ Zt}(Zt − E[Zt]), noting E[Gt(zk)] ≥ 0.

6.3 Generalized Ratio Wald Estimand
Researchers may also be interested in analyzing the generalized ratio Wald estimand:

E[Yj,t+h | Zt = z,FZ,Y
t−1 ]− E[Yj,t+h | Zt = z′,FZ,Y

t−1 ]

E[Yk,t | Zt = z,FZ,Y
t−1 ]− E[Yk,t | Zt = z′,FZ,Y

t−1 ]
,

which is the ratio of generalized impulse response functions at different lags and for different
outcome variables. Since this is the ratio of two generalized Wald estimands, we immediately
arrive at the following corollary by applying Theorem 8 twice.

Corollary 3. Assume an instrumented potential outcome system, z, z′ ∈ WZ and that

i. Differentiability: Yk,t(wk), Yj,t+h(wk) are continuously differentiable in closed intervalWk :=

[wk, wk] ⊂ R.

ii. Independence: [Zt ⊥⊥ {Wk,t(z) : z ∈ WZ}] | FZ,Y
t−1 and [Zt ⊥⊥ {Yk,t(wk), Yj,t+h(wk) : wk ∈

Wk}] | FZ,Y
t−1 .

iii. Relevance:
∫
W E[Y ′k,t(wk) | Ht(wk) = 1,FZ,Y

t−1 ]E[Ht(wk) | FZ,Y
t−1 ]dwk 6= 0.

iv. Monotonicity: Wk,t(z
′) ≤ Wk,t(z) | FZ,Y

t−1 with probability one.

Then, the generalized ratio Wald estimand equals∫
W E[Y ′k,t+h(wk) | Ht(wk) = 1,FZ,Y

t−1 ]E[Ht(wk) | FZ,Y
t−1 ]dwk∫

W E[Y ′k,t(wk) | Ht(wk) = 1,FZ,Y
t−1 ]E[Ht(wk) | FZ,Y

t−1 ]dwk

,

where Ht(wk) = 1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)}.

The interpretation of Corollary 3 is analogous to the interpretation of the ratio Wald estimand in
Corollary 1, except now everything is conditional on the natural filtration.

6.4 Generalized Local Projection IV and Local Filtered Projection IV Esti-
mands

In practice researchers typically estimate generalized impulse response functions using a two-stage
least-squares type estimator. This is also sometimes called “local projections with an external
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instrument” (Jordá et al., 2015). We first analyze this generalized local projection IV

Cov(Yj,t+h, Zt | FZ,Y
t−1 )

Cov(Yk,t, Zt | FZ,Y
t−1 )

, (15)

which again is a ratio, this time of the Generalized IV estimands at different lag lengths. Using the
same arguments as Corollary 2, it has the causal interpretation∫

WZ
E[Y ′j,t+h(zk) | FZ,Y

t−1 ]E[Gt(zk) | FZ,Y
t−1 ]dzk∫

WZ
E[Y ′k,t(zk) | FZ,Y

t−1 ]E[Gt(zk) | FZ,Y
t−1 ]dzk

,

where Gt|t−1(zk) = 1{zk ≤ Zt}(Zt − E[Zt | FZ,Y
t−1 ]).

Of more practical relevance, is the local filtered projection IV estimand is

Cov(Yj,t+h − Ŷj,t+h|t−1, Zt − Ẑt|t−1)

Cov(Yk,t − Ŷk,t|t−1, Zt − Ẑt|t−1)
,

where recall that, for example, Ŷk,t+h = E[Yk,t+h | FZ,Y
t−1 ], and Ẑt+h| = E[Zt+h | FZ,Y

t−1 ]. The
properties of this are inherited from those of the generalized local projection IV. In particular, it
equals ∫

WZ
E[E[Y ′j,t+h(zk) | FZ,Y

t−1 ]E[Gt(zk) | FZ,Y
t−1 ]]dzk∫

WZ
E[E[Y ′k,t(zk) | FZ,Y

t−1 ]E[Gt(zk) | FZ,Y
t−1 ]]dzk

.

7 Estimands Based Only on Outcomes
The dominant approach to causal inference in macroeconometrics is a model-based approach in
the tradition of Sims (1980). See, for example, Ramey (2016) and Kilian and Lutkepohl (2017)
for recent reviews. In that literature, researchers introduce parametric models to study the dynamic
causal effects of unobservable “structural shocks,” which themselves must be inferred from the
outcomes. Here we link this to our setup, mostly to place our work in context and illustrate that the
enormous macroeconometric literature on simultaneous equation modelling can be nested in the
direct potential outcome system framework. Assume there is a direct potential outcome system

{Wt, {Yt(w1:t) : w1:t ∈ W t
w}t≥1,

where researchers only see the outcomes {yobst }t≥1.
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7.1 Linear simultaneous equation approach
The causal inference approach of using only time series data on outcomes is in the storied tradition
of linear simultaneous equations models developed at the Cowles Foundation (e.g., Christ, 1994;
Hausman, 1983). The most essential causal challenges arise without any dynamic causal effects,
so we start with a static example as an illustration. Suppose that

A0Yt(w1:t) = α + wt, w1:t ∈ W t, t = 1, 2, ...,

where A0 is a non-stochastic, square matrix. Notice that in this model the potential outcome
process is deteministic and linear combinations of the potential outcomes equal the possible as-
signments for every t. If A0 is additionally invertible, then

Yt(w1:t) = A−10 (α + wt) ,

which implies that the contemporaneous average treatment effect is E[Yt(W1:t−1, w)−Yt(W1:t−1, w
′)] =

A−10 (w − w′), and the marginal average treatment effect is E[∂Yt(w1:t)

∂wT
t

] = A−10 whatever probabilis-
tic assumption is made about W1:t−1.

Furthermore, under this model, if we see (Wt, Yt) = {Wt, Yt(W1:t)}, then, if the second mo-
ments of the observables exist and Var(Wt) is non-singular, then for every t,

Cov(Yt,Wt)Var(Wt)
−1 = A−10 ,

which would make statistical inference rather straightforward. But the point of this simultaneous
equations literature is to carry out inference without directly observing the assignments — which
is a much harder task.

If, in addition to A0 being invertible, we assume that Var(Wt) <∞, then

Var(Yt) = A−10 Var(Wt)
(
A−10

)T
,

Crucially knowing Var(Yt) is not enough to untangle A0 and Var(Wt), and so knowledge of the
second moments of the observables is not enough alone to learn the contemporaneous average
treatment effect. In the linear simultaneous equations literature, this is resolved by a priori impos-
ing more economic structure on the potential outcome process, such as placing more structure on
the matrix A0.

A central a priori constraint is the one highlighted by Sims (1980). He imposed that (a) A0 is
triangular, (b) Var(Wt) is diagonal. For simplicity of exposition, look at the two dimensional case
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and write

A0 =

(
1 0

−a21 1

)
, A−10 =

(
1 0

a21 1

)
, Var(Wt) =

(
σ2
11 0

0 σ2
22

)
,

then the elements within A0 and Var(Wt) can be individually determined from Var(Yt) if Var(Yt)

is of full rank. The same holds in higher dimensions. Hence, with additional restrictions on the
potential outcome process, the contemporaneous causal effect can be determined from the data on
the outcomes, without having observing the assignments (or without the access to instruments).
There are alternative a priori constraints to this triangular which also work here and the above
structure extends to non-linear systems of equations g (Yt(w1:t)) = wt.

The linear “structural vector autoregressive ” (SVAR) version of the linear simultaneous equa-
tion has the same fundamental structure. Focusing on the one lag model with no intercept for
simplicity, the SVAR approach assumes that the potential outcome process satisfies

A0Yt(w1:t) = wt + A1Yt−1(w1:t−1).

Kilian and Lutkepohl (2017) provide a book length review of this model structure and its various
extensions and implications. Then A0 (I − Φ1L)Yt(w1:t) = wt, where L is a lag operator and
Φ1 = A−10 A1. So

Yt(w1:t) = A−10 wt + Φ1Yt−1(w1:t−1),

which in turn implies that the potential outcome process also has an SVMA model representation

Yt(w1:t) = A−10 wt + Φ1A
−1
0 wt−1 + Φ2

1A
−1
0 wt−2 + ...+ Φt−1

1 A−10 w1 + Φt
1A
−1
0 Y0.

In this case, the h-period ahead average treatment effect is

E[Yt+h(W1:t−1, w,Wt+1:t+h)− Yt+h(W1:t−1, w
′,Wt+1:t+h)] = Φh

1A
−1
0 (w − w′)

and the h-period ahead marginal average treatment effect is E[∂Yt+h(w1:t+h)/∂w′t] = Φh
1A
−1
0 .

The time series parameter Φ1 can be determined from the dynamics of the observable outcomes
if this process is stationary. But again A0 and Var(Wt) cannot be separately identified from the
observable outcomes, so further structural assumptions are needed.

7.2 Causal meaning of the GIRF of Yk,t on Yj,t+h

A broader analysis focuses on the h-step ahead generalized impulse response function of the j-th
outcome on the k-th outcome without placing functional form restrictions on the potential outcome
process. Here we provide a nonparametric causal meaning to it in terms of potential outcomes. To
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do so, we will further assume that the potential outcome process is a deterministic function of the
assignments and that the assignments are independent across time.

Theorem 10. Consider a direct potential outcome system, and further assume that

i. the potential outcome process Yt(w1:t) is deterministic for all t ≥ 0, w1:t ∈ W t.

ii. for all t 6= s, Wt ⊥⊥ Ws.

Them, so long as the corresponding moments exist,

E[Yj,t+h|(Yk,t = yk),FY
t−1]− E[Yj,t+h|(Yk,t = y′k),FY

t−1] (16)

= E[ψj,t+h(W1:t)|(Yk,t = yk),FY
t−1]− E[ψj,t+h(W1:t)|(Yk,t = y′k),FY

t−1], (17)

where ψj,t+h(w1:t) := E[Yj,t+h(w1:t,Wt+1:t+h)].

Theorem 10 illustrates that without functional form restrictions on the potential outcome process,
the generalized impulse response function of the j-th outcome on the k-th outcome has a causal
interpretation in terms of the shifting the entire conditional distribution of the treatments W1:t.
While this is a non-standard object, it can be interpreted as the causal effect of a stochastic in-
tervention on the assignment path W1:t, which has been an object of recent interest in a growing
cross-sectional literautre on causal inference in the presence of interference/spillovers across units
– see, for example, Munoz and van der Laan (2012), Papadogeorgou et al. (2019), Papadogeorgou
et al. (2021), and Wu et al. (2021). Nonetheless, this is a complex causal effect as it measures an
average causal effect of simultaneously shifting all assignments from time t = 1 to t.

8 Conclusion
In this paper, we developed the nonparametric, direct potential outcome system to study causal
inference in observational time series settings. We place no functional form restrictions on the
potential outcome process, no restrictions on the extent to which past assignments causally affect
the outcomes, nor common time series assumptions such as “invertibility’ or “recoverability.” The
direct potential outcome system therefore nests most leading econometric models used in time
series settings as a special case. We then studied conditions on the assignments under which com-
mon time series estimands, such as the impulse response functions, generalized impulse response
function, and local projections, have a causal interpretation in terms of underlying dynamic causal
effects. We further showed that provided the researcher observes an instrument that satisfies an
appropriate unconfoundedness and monotonicity condition, then common IV estimands such as
local projections instrumenal variables also have causal interpretations in terms of local average
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dynamic causal effects. Taken together, the potential outcome system provides a flexible, non-
parametric foundation for making causal statements from observational time series of outcomes,
assignments, and instruments.
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A Proofs of Results for Assignments and Outputs

A.1 Proof of Theorem 1

To prove this result, we begin by rewriting E[Yj,t+h1{Wk,t = wk}]. Notice that

E[Yj,t+h1{Wk,t = wk}]

= E[Yj,t+h(W1:t−1, wk,W−k,t,Wt+1:t+h)1{Wk,t = wk}]

= E[Yj,t+h(W1:t−1, wk,W−k,t,Wt+1:t+h)]E[1{Wk,t = wk}]

+Cov (Yj,t+h(W1:t−1, wk,W−k,t,Wt+1:t+h), 1{Wk,t = wk}) .

Therefore, it immediately follows that

E[Yj,t+h | Wk,t = wk] = E[Yj,t+h(W1:t−1, wk,W−k,t,Wt+1:t+h)]

+
Cov (Yj,t+h(W1:t−1, wk,W−k,t,Wt+1:t+h), 1{Wk,t = wk})

E[1{Wk,t = wk}]
.

The result is then immediate by (i) applying the same calculation to E[Yj,t+h1{Wk,t = w′k}], (ii)

taking the difference, and (iii) applying the definition of Yj,t+h(wk). �

A.2 Proof of Theorem 3

The style proof extends Angrist et al. (2000) in their analysis of the Wald estimand in a cross-

sectional setting. Begin by writing Yt+h = Yt+h(Wk,t) as

Yt+h = Yt+h(wk) +

∫ Wk,t

wk

∂Yt+h(w̃k)

dw̃k

∂w̃k

= Yt+h(wk) +

∫ wk

wk

∂Yt+h(w̃k)

∂w̃k

1{w̃k ≤ Wk,t}dw̃k
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by the fundamental theorem of calculus. Then, it follows that

Cov(Yt+h,Wk,t) = E[Yt+h(Wk,t − E[Wk,t])]

(1)
= E[(Yt+h − Yt+h(wk))(Wk,t − E[Wk,t])

= E

[(∫ wk

wk

∂Yt+h(w̃k)

∂w̃k

1{w̃k ≤ Wk,t}dw̃k

)
(Wk,t − E[Wk,t])

]

=

∫ wk

wk

E
[
∂Yt+h(w̃k)

∂w̃k

1{w̃k ≤ Wk,t}(Wk,t − E[Wk,t])

]
dw̃k

(2)
=

∫ wk

wk

E
[
∂Yt+h(w̃k)

∂w̃k

]
E [1{w̃k ≤ Wk,t}(Wk,t − E[Wk,t])] dw̃k

where (1) and (2) follow since Wk,t ⊥⊥ {Yt+h(wk) : wk ∈ Wk}. Interchanging the order of the

derivation and the expectation delivers the result. Analogously,

Wk,t = wk +

∫ Wk,t

wk

dw̃k = wk +

∫ wk

wk

1{w̃k ≤ Wk,t}dw̃k,

so

V ar(Wk,t) = E[(Wk,t − wk)(Wk,t − E[Wk,t])] =

∫ wk

wk

E [1{w̃k ≤ Wk,t}(Wk,t − E[Wk,t])] dw̃k.

The result then follows immediately. To see that the resulting weights are non-negative, observe

that for w̃k ∈ [wk, wk]

E [1{Wk,t ≥ w̃k} (Wk,t − E[Wk,t])]

= E [1{Wk,t ≥ w̃k}Wk,t]− E[1{Wk,t ≥ w̃k}]E[Wk,t]

= (E [Wk,t | Wk,t ≥ w̃k]− E[Wk,t])P(Wk,t ≥ w̃k) ≥ 0

since E [Wk,t | Wk,t ≥ w̃k] ≥ E[Wk,t] for w̃k ∈ [wk, wk]. �

A.3 Proof of Theorem 4

The proof is analogous to the proof of Theorem 1. We start by rewriting E[Yj,t+h1{Wk,t = wk} |
Ft−1], noticing that

E[Yj,t+h1{Wk,t = wk} | Ft−1]

= E[Yj,t+h(wobs
1:t−1, wk,W−k,t,Wt+1:t+h)1{Wk,t = wk} | Ft−1]

= E[Yj,t+h(wobs
1:t−1, wk,W−k,t,Wt+1:t+h) | Ft−1]E[1{Wk,t = wk} | Ft−1]

38



+Cov
(
Yj,t+h(wobs

1:t−1, wk,W−k,t,Wt+1:t+h), 1{Wk,t = wk} | Ft−1
)
.

Therefore, we have shown that

E[Yj,t+h | Wk,t = wk,Ft−1] = E[Yj,t+h(wobs
1:t−1, wk,W−k,t,Wt+1:t+h) | Ft−1]

+
Cov

(
Yj,t+h(wobs

1:t−1, wk,W−k,t,Wt+1:t+h), 1{Wk,t = wk} | Ft−1
)

E[1{Wk,t = wk} | Ft−1]
.

The result follows by (i) applying the same calculation to E[Yj,t+h1{Wk,t = w′k} | Ft−1], (ii) taking

the difference, and (iii) applying the definition of the potential outcome Yj,t+h(wk). �

B Proofs of Results for Assignments, Instruments and Outputs

B.1 Proof of Theorem 6

To prove this result, we first observe that

E[Yj,t+h | Zt = z] = E[Yj,t+h(wobs
1:t−1,Wk,t(z),W−k,t,Wt+1:t+h) | Zt = z]

= E[Yj,t+h(wobs
1:t−1,Wk,t(z),W−k,t,Wt+1:t+h)]

by (iii). Therefore,

E[Yj,t+h | Zt = z]− E[Yj,t+h | Zt = z′]

= E[Yj,t+h(wobs
1:t−1,Wk,t(z),W−k,t,Wt+1:t+h)− Yj,t+h(wobs

1:t−1,Wk,t(z
′),W−k,t,Wt+1:t+h)].

Next, we can further rewrite this previous expression as

E[

∫ Wj,t(z)

Wj,t(z′)

∂Yj,t+h(wk)

∂wk

dwk] = E[

∫
W

∂Yj,t+h(wk)

∂wk

1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)}dwk]

where we used the definition Yj,t+h(wk) := Yj,t+h(W1:t−1, wk,t,W−k,t,Wt+1:t+h). Finally, assum-

ing that we can exchange the order of integration and expectation, we arrive at∫
W
E[
∂Yj,t+h(wk)

∂wk

1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)}]dwk

=

∫
W
E[
∂Yj,t+h(wk)

∂wk

,Wk,t(0) ≤ wk ≤ Wk,t(1)]E[1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)}]dwk.
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We may apply the same argument to the denominator (again assuming that we can exchange the

order of integration and expectation) to arrive at

E[Wk,t | Zt = z]− E[Wk,t | Zt = z′] =

E[Wk,t(z)−Wk,t(z
′)] =

∫
W
E[1{Wk,t(z

′) ≤ wk ≤ Wk,t(z)}].

Taking the ratio then delivers the desired result. �

B.2 Proof of Theorem 8

The proof is the same as the Proof of Theorem 6, except we must now condition on Ft−1 through-

out. �

C Proofs of Results for Outputs

C.1 Proof of Theorem 10

Then, if the subsequent moments exist, we have that

E[Yj,t+h|(Yk,t = yk),FY
t−1] = E[Yj,t+h(W1:t)|(Yk,t = yk),FY

t−1], Assumption (i)

= E[E[Yj,t+h(W1:t+h)|(Yk,t = yk),W1:t,FY
t−1]|Yk,t = yk,FY

t−1], Adam’s law

= E[E[Yj,t+h(W1:t+h)|W1:t)]|(Yk,t = yk),FY
t−1], Assumption (i)

= E[ψj,t+h(W1:t)|(Yk,t = yk),FY
t−1], Assumption (ii)

the last line holds as the future assignments are not informed by the historical ones. Applying this

result twice gives the first result. �
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