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Panel Experiments
• Panel experiments: sequentially assign units to random intervention, measure
response and repeat procedure over a fixed period time.
• Panel experiments are widely used in biostatistics, epidemiology and psychology (e.g.
Robins, 1986, 1994;Murphy et al., 2001;Murphy, 2003; Lillie et al., 2011)).
• Example: Patients receive antiretroviral treatment for HIV overmanymonths (Hernan
and Robins, 2019).
- Some patients may have received treatment in all months
Others may have never received treatment
Others receive treatment in somemonths but not others.

What is the both the contemporaneous and dynamic causal effect of antiretroviral
treatment on health outcomes?
• Panel experiments useful because (1) potential gains in power (Bellemare et al., 2014, 2016);
(2) uncover treatment heterogeneity across units and time (Czibor et al., 2019).
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Panel Experiments
• Panel experiments: sequentially assign units to random intervention, measure
response and repeat procedure over a fixed period time.
• Despite benefits, panel experiments are rare in economics.
• Key concern focuses on how dynamic treatment effects may induce biases inconventional experimental estimators (Charness et al., 2012).

- If treatment yesterday affects outcomes today, how should this be accounted for in
analysis stage?

• This Paper: Tackle by developing finite population framework for analyzing panel
experiments.
↪→ Enable applied researchers to use panel experiments to answer interesting
economic questions.
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Overview of Paper
• Develop potential outcome panel model and define useful class of dynamic causalestimands.

- How does changing assignment affect outcomes after p periods?
• For this class of estimands, we provide nonparametric estimators that are

1. unbiased over randomization distribution,
2. asymptotically normally distributed as either number of experimental units or sample
periods grows large (finite pop. CLT).

Providemethods for inference on both weak and sharp null hypotheses.
• We analyze limiting bias of standard linear estimators commonly employed on paneldata.

- Conventional estimators are biasedwhenever there exists (1) dynamic causal effects, (2)
serial correlation in assignments.

• Illustrate ourmethods by re-analyzing a panel experiment on rational cooperation
conducted by Andreoni and Samuelson (2006).
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Outline

Potential outcome panel and dynamic causal effects

Nonparametric estimation and testing

Estimation in a linear potential outcome panel

Empirical application: rational cooperation in games
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Assignment Panels and Potential Outcomes
• Balanced panel setting in whichN units observed over T periods.
• TreatmentWi,t is assigned to each unit i in period t.Treatment has finite support, and is typically binary.
• Assignment Panel: matrix of treatments assigned to all units over sample period,
W1:N,1:T 

W1,1 . . . W1,t . . . W1,T... . . . ... . . . ...
Wi,1 . . . Wi,t . . . Wi,T... . . . ... . . . ...
WN,1 . . . WN,t . . . WN,T


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Assignment Panels and Potential Outcomes
• Balanced panel setting in whichN units observed over T periods.
• TreatmentWi,t is assigned to each unit i in period t. Treatment has finite support, and istypically binary.
• Cross-sectional assignment: treatments assigned to all units at period t,W1:N,t.

W1,1 . . . W1,t . . . W1,T... . . . ... . . . ...
Wi,1 . . . Wi,t . . . Wi,T... . . . ... . . . ...
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Assignment Panels and Potential Outcomes
• Balanced panel setting in whichN units observed over T periods.
• TreatmentWi,t is assigned to each unit i in period t. Treatment has finite support, and istypically binary.
• Potential outcome Yi,t(w1:N,1:T): Outcome that would be observed for unit i at period talong assignment panel.

- In principle allows for arbitrary spillovers across units and time periods
• Potential outcomes as a function of assignment paths first appears in Robins (1986);further developed extensively in biostatistics.

- Our work differs by avoiding super-population/random sampling arguments.
All arguments conditioned on the potential outcomes and uncertainty arises from
randomness in assignment panel.
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Assignment Panels and Potential Outcomes
• Balanced panel setting in whichN units observed over T periods.
• TreatmentWi,t is assigned to each unit i in period t. Treatment has finite support, and istypically binary.
• Potential outcome Yi,t(w1:N,1:T): Outcome that would be observed for unit i at period talong assignment panel.

- In principle allows for arbitrary spillovers across units and time periods
• Unified generalization design-based framework for analysis of cross-sectionalexperiments (Imbens and Rubin, 2015) and time series experiments (Bojinov and Shephard,
2019).
- T = 1↔ cross-sectional experiment.
- N = 1↔ time series experiment.
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Potential outcome panel

• Introduce restrictions on potential outcomes that limit spillovers across units and time
periods.
• Non-interference: No spillovers across units.

- Potential outcome for unit i at time t does not depend on assignment paths of other units.
• Non-anticipation: Potential outcome for unit i at time t does not depend on futureassignments.

- For pathswi,1:T , w̃i,1:T , Yi,t(wi,1:T) = Yi,t(w̃i,1:T)wheneverwi,1:t = w̃i,1:t.
• =⇒ Potential outcome for unit i at time t only depends on unit i’s assignment path up to
time t, denoted Yi,t(wi,1:t).

6 / 21



Dynamic causal effects
• Dynamic causal effects compare potential outcomes for unit-i at time-t along different
assignment paths

τi,t(wi,1:t, w̃i,1:t) := Yi,t(wi,1:t)− Yi,t(w̃i,1:t).

• Ourmain focus is on lag-p dynamic causal effects
τi,t(w, w̃)(p) := τi,t({wobs

i,1:t−p−1,w}, {wobs
i,1:t−p−1, w̃}).

Measures effect of changing assignment path from w̃ tow over periods t− p to t, along
observed assignment path up to t− p− 1.
• By restricting pathsw and w̃ to share common features and averaging over possible
paths, wemay obtain interesting dynamic causal effects.
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Weighted average dynamic causal effects
• Weighted average dynamic causal effect summarizes average causal effect of switching
assignment at period t− p, averaging over all possible paths from t− p+ 1 to t

τ†
i,t(w, w̃)(p) := ∑

v∈Wp
av
{
Yi,t(wobs

i,1:t−p−1,w, v)− Yi,t(wobs
i,1:t−p−1, w̃, v)

}
.

If treatment switched from w̃ tow at time t− p, what is the average effect on outcomes
at time t?
• Weighted average dynamic causal effects are finite-population causal analogues ofimpulse response functions.

- Rambachan and Shephard (2020): generalized impulse response function (Koop et al., 1996)
equivalent to weighted average dynamic causal effect for particular choice of weights.
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Averaging dynamic causal effects
• Target estimand: averages across time and units of lag-p dynamic causal effects.

1. Time-t average:

τ̄t(w, w̃)(p) :=
1
N

N
∑
i=1

τi,t(w, w̃)(p) ← Heterogeneity across time

2. Unit-i average:

τ̄i(w, w̃)(p) :=
1

T − p
T
∑

t=p+1
τi,t(w, w̃)(p) ← Heterogeneity across units

3. Total average:
τ̄(w, w̃)(p) :=

1
N(T − p)

T
∑

t=p+1

N
∑
i=1

τi,t(w, w̃)(p).

• Def’ns extend to weighted average dynamic causal effects.
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AssignmentMechanism

• Assignmentmechanism is assumed to be known and sequentially randomized.
• Sequentially randomized: Cross-sectional assignment at time t only depends on past
assignments and observed outcomes, not future nor unobserved past potential
outcomes.
• Leading special case further assumes assignmentmechanism is individualistic.

- Conditional on own past assignments and outcomes, assignment for unit i independent of
past assignments and outcomes of all other units.
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Nonparametric estimation and testing: overview
• So far: defined a rich class of dynamic causal estimands.

↪→Canwe construct estimators for them? Testing and confidence intervals?
• Next: develop nonparametric Horvitz-Thompson type estimator of lag-p dynamic
causal effect and develop twomethods for inference.
• Conservative tests for weak null hypotheses based on finite population central limittheorem.

- Requires assignmentmechanism to be individualistic and satisfy an overlap/positivity
condition.

• Exact tests for sharp null hypotheses based on randomization distribution (see Section3.4 for details).
- Requires assignmentmechanism to be sequentially randomized.

• In the paper: develop analogous results for HT estimator of weighted average dynamic
causal effects.
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Propensity score andHorvitz-Thompson estimator
• Propensity score: conditional probability of assignment path given past treatments
and outcomes

pi,t−p(w) := Pr(Wi,t−p:t = w|Wi,1:t−p−1,Yi,1:t(Wi,1:t−p−1,w)).

• Probabilistic assignmentmechanism: exists CL,CU ∈ (0,1) such that
CL < pi,t−p(w) < CU.

• HT estimator of lag-p dynamic causal effect is

τ̂i,t(w, w̃; p) :=
Yi,t(wobs

i,1:t−p−1,w)1(wobs
i,t−p:t = w)

pi,t−p(w)
−

Yi,t(wobs
i,1:t−p−1, w̃)1(wobs

i,t−p:t = w̃)
pi,t−p(w̃)

,

which is computable along observed treatment path.
12 / 21



Horvitz-Thompson Estimator

• Theorem 3.1: Under individualistic+ probabilitistic assignment, HT estimator is
unbiased for lag-p dynamic causal effect over randomization distribution and can
derive its variance. details

• Error in estimating lag-p causal effect w/ HT estimator is a martingale difference
sequence through time and conditionally independent across units.
• Variance of HT estimator is not identified (depends on unobserved potential
outcomes).
But we construct an unbiased estimator for an upper-bound (Lemma 3.2). details
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Finite population CLT and conservative inference
• Martingale difference properties enable us to develop finite pop. CLTs to appropriately
scaled and centered versions of averages of HT estimator.
• Theorem 3.2: Under individualistic, probabilistic assignment+ bounded potentialoutcomes,

1. Scaled+ centeredHT estimator of time-t, avg. dynamic causal effect d−→N(0,1) asN→ ∞.
2. Scaled+ centered HT estimator of unit-i, avg. dynamic causal effect d−→N(0,1) as T → ∞.
3. Scaled+ centered HT estimator of total avg. dynamic causal effect d−→N(0,1) asNT → ∞.
details

• Construct conservative confidence intervals and test weak nulls that average dynamic
causal effects are zero using finite population CLTs and estimators of variance bound.
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Linear potential outcome panel

• Much existing research on causal inference in panel data focuses on estimating
dynamic causal effects using linear models (e.g., linear regression w/ unit/time fixed
effects).
• We analyze estimand identified by such estimators in linear potential outcome panel.
• Linear potential outcome panel assumes potential outcome satisfies

Yi,t(wi,1:t) = βi,t,0wi,t + . . . + βi,t,t−1wi,1 + εi,t ∀t ≥ 1,
Coeff. βi,t,j are dynamic causal coefficients.
- Leading example arises from autoregressive potential outcomemodel details
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Estimation with linear models: unit fixed effects
• Characterize finite pop. prob. limit of unit fixed effects estimator in linear potential
outcomesmodel, allowing for arbitrary heterogeneity in causal coefficients.
• Proposition 4.2: Prob. limit of unit fixed effects estimator asN→ ∞ decomposed intothree terms:

1. Weighted avg of contemporaneous dynamic causal coefficients w/ weights proportional to
unit-specific variance of treatment assignments.

2. Weighted avg of lagged dynamic causal coefficients w/ weights proportional to
unit-specific autocovariance of treatment assignments.

3. Additional error due to possible relationship b/w average treatment and “null” assignment
path across units.

details example

• In the paper: provide analogous results for two-way fixed effects estimator
(Proposition 4.3).
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Andreoni & Samuelson (2006): rational cooperation in games
• Andreoni & Samuelson (2006): Develop game-theoretic model of “rationalcooperation” in two-period prisoners’ dilemma.

- Higher payoffs are in period two =⇒ more players will cooperate in period one.
• Design of panel experiment: details

- Subjects play 20 games of two-period prisoners’ dilemma.
- Distribution of payoffs across two periods randomly assigned.
- Subjects randomlymatched into pairs for each game.

In total,N = 110 participants over T = 20 games.
• Subjects may learn about structure of stage gamew/ each play, so researchers may
worry about dynamic treatment effects.
• Our Goals:

1. investigate whether there appear to be dynamic treatment effects,
2. test AS’ prediction inmanner that is robust to possible dynamic treatment effects.
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Rational cooperation in prisoners’ dilemma
• Outcome Yi,t: whether participant i cooperated in period 1 of game t.
• TreatmentWi,t: whether participant i played game t in which payoffs moreconcentrated in period 2.
• Estimand: Total lag-pweighted avg dynamic causal effect τ̄†(1,0; p).
• Summarizes dynamic causal effect of treatment on outcome, averaged across all unitsand time periods.

- p = 0: causal effect of higher payoffs in period 2 of current game on cooperation in current
game =⇒ AS’ prediction?

- p > 0: causal effect of higher payoffs in period 2 of previous game on cooperation in current
game =⇒ dynamic causal effects?
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Rational cooperation in prisoners’ dilemma rand. dists

lag-p
0 1 2 3

Point estimate, ˆ̄τ†(1,0)(p) 0.285 0.058 0.134 0.089
Randomization p-value 0.000 0.263 0.012 0.114

• Strongly reject sharp null of no contemporaneous dynamic causal effects for all units
=⇒ confirmAS’ prediction of rational cooperation.

• Point estimates ˆ̄τ†(1,0)(p) > 0 for p > 0 =⇒ suggestive evidence of dynamic causaleffects.
- Treatmentmay induce participants to learn value of cooperation, thereby producing
persistent effects.

• In the paper: additionally report results for period-specific and unit-specific weighted
average dynamic causal effects.
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Conclusion

• Develop potential outcomemodel for studying dynamic causal effects in panel
experiments.
• Key Ideas + Results:

1. Define new panel-based dynamic causal estimands and introduce associated
nonparametric estimator.

2. Show non-parametric estimator is unbiased over randomization dist and derive novel
finite population CLTs.

3. Derive finite population probability limit of linear fixed effects estimators.
• Potential outcome panel is a rich framework for exploring dynamic causal effects in
panel data.
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Thank you!
asheshr@g.harvard.edu
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Appendix
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Horvitz-Thompson estimator back

• Theorem 3.1: Under individualistic + probabilistic assignment,
E[τ̂i,t(w, w̃; p) | Fi,t−p−1] = τi,t(w, w̃; p),
Var(τ̂i,t(w, w̃; p)|Fi,t−p−1) = γ2i,t(w, w̃)− τi,t(w, w̃; p)2,

where
γ2i,t(w, w̃; p) =

Yi,t(wobs
i,1:t−p−1,w)2
pi,t−p(w)

+
Yi,t(wobs

i,1:t−p−1, w̃)2
pi,t−p(w̃)

.

Further, for distinctw, w̃, w̄, ŵ ∈ W (p+1)

Cov(τ̂i,t(w, w̃; p), τ̂i,t(w̄, ŵ; p)|Fi,t−p−1) = −τi,t(w, w̃; p)τi,t(w̄, ŵ; p).

Finally, τ̂i,t(w, w̃) and τ̂j,t(w, w̃) are independent for i 6= j conditional onF1:N,t−p−1.
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Variance estimation for Horvitz-Thompson estimator back

• Variance of τ̂i,t(w, w̃; p) depends upon the potential outcomes under both thetreatment and counterfactual and is generally not estimable.
• However, it is bounded from above by γ2i,t(w, w̃; p), which we can estimate by

γ̂2i,t(w, w̃; p) =
(yobsi,t )

2{1(wobs
i,t−p:t = w) + 1(wobs

i,t−p:t = w̃)}
pi,t−p(wobs

i,t−p:t)
2 .

• Lemma 3.2: Under set-up of Theorem 3.1,E[γ̂2i,t(w, w̃; p)|Fi,t−p−1] = γ2i,t(w, w̃; p).
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Finite population CLT and conservative inference back

• Estimate unit and time averaged dynamic causal effects by averaging the HT estimator.
• Example: the estimator of the time-t, lag-p average dynamic causal effect is

ˆ̄τ·t(w, w̃; p) :=
1
N

N
∑
i=1

τ̂i,t(w, w̃; p)

and its variance is

σ2·t :=
1
N

N
∑
i=1
{γ2i,t(w, w̃; p)− τi,t(w, w̃; p)2}.
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Finite population CLT and conservative inference back

• Theorem 3.2: Under individualistic + probabilistic assignment and bounded potential
outcomes

√
N{ ˆ̄τ·t(w, w̃; p)− τ̄·t(w, w̃; p)}

σ·t

d−→ N(0,1) asN→ ∞,

√
T − p{ ˆ̄τi·(w, w̃; p)− τ̄i·(w, w̃; p)}

σi·

d−→ N(0,1) as T → ∞,√
N(T − p){ ˆ̄τ(w, w̃; p)− τ̄(w, w̃; p)}

σ

d−→ N(0,1) asNT → ∞.
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Autoregressive potential outcome panel back

• Autoregressive potential outcome panel satisfies Yi,1(wi,1) = β∗i,1,0wi,1 + εi,1 and, for all
t > 1,
Yi,t(wi,1:t) = φi,t,0Yi,t−1(wi,1:t−1)+ . . .+φi,t,t−2Yi,1(wi,1)+ β∗i,t,0wi,t+ . . .+ β∗i,t,t−1wi,1+ ε∗i,t

Coefficients φi,t,0:t−2, β∗i,t,0:t−1 and residuals ε∗i,1:t do not depend on treatments.
• Allows for arbitrary heterogeneity in the parameters across units and arbitrary
dependence across units and time through ε∗i,t.
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Estimation with linear models: unit fixed effects back

• Let the within-unit transformed variable be Ǎi,t = Ai,t − Āi·.Denote Cov(W̌i,t, W̌i,s) = σ̌W,i,t,s and µ̌i,t = E
[
W̌i,t|F1:N,0,T

].
• Proposition 4.2: Assume the potential outcome panel is linear, the assignment
mechanism is individualistic and Var(W̌i,t|F1:N,0,T) = σ̌2W,i,t < ∞ for each i ∈ [N], t ∈ [T].
Further assume that asN→ ∞, the following sequences converge non-stochastically:

N−1
N
∑
i=1

βi,t,sσ̌W,i,t,s → κ̌W,β,t,s,

N−1
N
∑
i=1

σ̌2W,i,t → σ̌2W,t, N−1
N
∑
i=1

Y̌i,t(0)µ̌i,t → δ̌t.

Then, asN→ ∞,
β̂UFE

p−→ ∑T
t=1 κ̌W,β,t,t

∑T
t=1 σ̌2W,t

+
∑T

t=1 ∑t−1
s=1 κ̌W,β,t,s

∑T
t=1 σ̌2W,t

+
∑T

t=1 δ̌t

∑T
t=1 σ̌2W,t

.
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Estimation w/ linear models: unit fixed effects, example back

• Consider linear potential outcomemodel w/ lag-1 causal effects
Yi,t(wi,1:t) = β0wi,t + β1wi,t−1 + εi,t

and Yi,1(wi,1) = β0wi,1 + εi,1 for t = 1.
• Proposition 4.2 establishes

β̂UFE = β0︸︷︷︸
(1)

+ β1
∑T

t=2 σW̌,t,t−1
∑T

t=1 σ2̌W,t︸ ︷︷ ︸
(2)

+
∑T

t=1 δ̌t

∑T
t=1 σ2̌W,t︸ ︷︷ ︸
(3)

,

where (1) contemporaneous dynamic causal coefficient, (2) depends on lag-1 dynamic
causal coefficient and autocovariance b/w assignments across periods.
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Andreoni & Samuelson (2006): design of panel experiment back

• Two-period prisoners’ dilemma stage game:
- Payoffs across two periods determined by x1, x2 ≥ 0 such that x1 + x2 = 10.- Define λ = x2

x1+x2 , which govern rel. payoffs b/w two periods.
λ = 0→ all payoffs occurred in period one.
λ = 1→ all payoffs occurred in period two.

Predict larger λ, players will cooperatemore often in period one.

C D
C (3x1,3x1) (0,4x1)
D (4x1,0) (x1, x1)

Period one

C D
C (3x2,3x2) (0,4x2)
D (4x2,0) (x2, x2)

Period two
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Andreoni & Samuelson (2006): design of panel experiment back

• Panel experiment conducted over 5 sessions.
• In each session, 22 subjects were recruited to play 20 games of the twice-playedprisoners’ dilemma.

- In each game, participants randomlymatched into pairs.
- Each pair then randomly assigned λ from set {0,0.1, . . . ,0.9,1}.

• Authors analyze experimental data using regressionmodels w/ unit-level fixed effects.
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Rational cooperation in prisoners’ dilemma back
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