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Abstract

This paper proposes tools for robust inference in difference-in-differences and event-
study designs where the parallel trends assumption may be violated. Instead of re-
quiring that parallel trends holds exactly, we impose restrictions on how different the
post-treatment violations of parallel trends can be from the pre-treatment differences
in trends (“pre-trends”). The causal parameter of interest is partially identified under
these restrictions. We introduce two approaches that guarantee uniformly valid infer-
ence under the imposed restrictions, and we derive novel results showing that they have
desirable power properties in our context. We illustrate how economic knowledge can
inform the restrictions on the possible violations of parallel trends in two economic
applications. We also highlight how our approach can be used to conduct sensitivity
analyses showing what causal conclusions can be drawn under various restrictions on
the possible violations of the parallel trends assumption.
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1 Introduction

Researchers using difference-in-differences (DiD) and related methods are often unsure about
the validity of the parallel trends assumption needed for point identification of the causal
parameter of interest. It has therefore become common practice to assess the plausibility
of the parallel trends assumption by testing for pre-treatment differences in trends (“pre-
trends”). Although pre-trends tests are intuitive, recent research has shown that they may
suffer from low power (Freyaldenhoven, Hansen and Shapiro, 2019; Kahn-Lang and Lang,
2020; Bilinski and Hatfield, 2020; Roth, Forthcoming), and that conditioning the analysis on
passing pre-trends tests introduces statistical issues related to pre-testing (Roth, Forthcom-
ing). How then should researchers proceed when they are unsure about the validity of the
parallel trends assumption?

This paper proposes methods for robust inference and sensitivity analysis in empirical
settings where the parallel trends assumption may not hold. Building on work by Manski
and Pepper (2018), we show that the causal parameter of interest can be (partially) identified
under a large class of restrictions that impose that the post-treatment violations of parallel
trends cannot be “too different” from the pre-trends. We then introduce methods that yield
uniformly valid inference for the treatment effect under the imposed restrictions. Intuitively,
our inference methods account for both statistical uncertainty (we can only noisily estimate
the true pre-trend) as well as “identification uncertainty” (even if the true pre-trend were
known, we may not know exactly how to extrapolate it). Our approach thus formalizes the
intuition motivating pre-trends testing while avoiding the statistical issues described above.

More concretely, we consider a setting in which the researcher estimates a vector of “event-
study” coefficients β̂ “ pβ̂1pre, β̂1postq1 P R¯

T`T̄ , where β̂pre and β̂post respectively correspond with
estimates for

¯
T pre-treatment periods and T̄ post-treatment periods. We assume that β̂ is

consistent for the reduced-form parameter β, which can be decomposed as

β “

˜

0

τpost

¸

loooomoooon

“: τ

`

˜

δpre

δpost

¸

loooomoooon

“: δ

, (1)

where τ is a causal parameter of interest that is assumed to be 0 in the pre-treatment
period and δ is a bias from a difference in trends. For instance, in the canonical (non-
staggered) difference-in-differences framework, β̂ may be the coefficients from an “event-
study regression” specification, τ the vector of period-specific average treatment effects on
the treated (ATT) for some policy of interest, and δ the difference in trends of untreated
potential outcomes between the treated and comparison groups. As we discuss in Section
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2, this framework also applies to more complicated empirical settings, such as those with
staggered treatment timing (e.g. Callaway and Sant’Anna, 2020; Sun and Abraham, 2020).
The usual parallel trends assumption used to point identify τpost is that δpost “ 0, and
researchers frequently assess the plausibility of this assumption by testing the null hypothesis
δpre “ 0 (a “pre-trends” test).

Instead of imposing that the parallel trends assumption holds exactly, we place restric-
tions on the possible post-treatment difference in trends δpost given the point identified pre-
trend δpre. Such restrictions formalize the intuition motivating pre-trends tests, namely that
pre-trends are informative about counterfactual post-treatment differences in trends. For-
mally, we assume that δ P ∆ for some researcher-specified set ∆, and show that the causal
parameter τpost is partially identified under such restrictions.

Restrictions of this form can be used to formalize a wide variety of intuitions about
possible violations of the parallel trends assumption that are commonly expressed in applied
work. For example, as discussed in Manski and Pepper (2018), researchers may be willing
to assume that the confounding factors that create post-treatment violations of parallel
trends are similar in magnitude to those in the pre-treatment period. This intuition can be
formalized by specifying a ∆ that bounds the maximal post-treatment violation of parallel
trends by a parameter M̄ times the maximal pre-treatment violation of parallel trends. In
other contexts, researchers are concerned about violations of parallel trends from secular
trends that are assumed to evolve smoothly over time. This intuition can be formalized by
bounding the extent to which the slope of the violation of parallel trends can change over
time. We adopt a flexible framework that allows researchers to capture these intuitions, as
well as many other restrictions that are implied by context-specific knowledge about possible
confounding factors.

We then introduce methods to conduct uniformly valid inference on a scalar parameter
of the form θ “ l1τpost under the restriction δ P ∆. As emphasized in the recent literature
on pre-trends testing, the pre-treatment coefficients β̂pre are often imprecise estimates of
δpre. It is therefore important to introduce inference methods that account for the statistical
uncertainty in the estimation of the event-study coefficients. We introduce two main inference
approaches, with different desirable properties depending on the shape of ∆.

We first introduce a general inference approach that can accommodate a wide variety
of restrictions of ∆. This approach is based on the observation that conducting inference
on θ can be cast as the problem of testing a system of moment inequalities, allowing us to
leverage a large econometrics literature on moment inequality testing (Canay and Shaikh
(2017) provide a recent review). The moments have a potentially large number of nuisance
parameters that enter linearly, and we therefore consider an implementation of this approach
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based on the conditional and hybrid approaches of Andrews, Roth and Pakes (2021, hence-
forth ARP), who considered moment inequalities with this structure. Uniform size control
for these tests follows nearly immediately from results in ARP.

We then prove that the tests proposed by ARP have some desirable power properties in
our context. First, the conditional and hybrid tests are consistent, in the sense that they have
power approaching 1 against fixed alternatives outside of the identified set. Second, we prove
that the conditional test has optimal local asymptotic power under a linear independence
constraint qualification (LICQ) assumption. As described in Kaido, Molinari and Stoye
(2021), LICQ and related constraint qualifications have been used widely in the partial
identification literature, and are often imposed to ensure size control. By contrast, we show
that ARP conditional test is asymptotically valid even when LICQ fails, but has optimal
local asymptotic power envelope when LICQ is satisfied. Intuitively, this result implies that
the conditional test will perform well when the binding and non-binding moments are “far
apart” relative to the sampling variation in the data. We provide several intuitive examples
to illustrate when this result will and will not be applicable. Our result also implies that the
ARP hybrid test will have near-optimal local asymptotic power under LICQ. These power
results are new, and exploit additional structure in our context not contained in ARP.

Our second approach to inference is based on fixed length confidence intervals (FLCIs)
(Donoho, 1994). FLCIs have desirable finite-sample guarantees for particular ∆s of interest.
In particular, results from Armstrong and Kolesár (2018, 2020b) imply that when ∆ is convex
and centrosymmetric, FLCIs have near-optimal expected length in the finite-sample normal
model. These results are applicable for one of our leading examples, ∆SD, which restricts
the smoothness of the difference in trends. In Monte Carlo simulations, we find that the use
of such FLCIs can lead to substantial power gains over the conditional/hybrid approaches
for ∆SD when the length of the identified set is short relative to the sampling variation in
the data. This is intuitive since the asymptotic power guarantees for the conditional/hybrid
approaches are in the asymptotic regime where sampling uncertainty is small relative to the
length of the identified set, in contrast to the finite-sample guarantees for FLCIs. On the
other hand, FLCIs are applicable for a much smaller range of ∆s: indeed, we show that for
many other choices of ∆, they will be inconsistent in the strong sense that power against
fixed points outside the identified set need not converge to one asymptotically.

Based on our theoretical results and Monte Carlo simulations, we recommend the ARP
hybrid approach for general forms of ∆, but prefer the FLCI approach in special cases (such
as for ∆SD) where the conditions for consistency and finite-sample near-optimality are met.

We recommend that applied researchers use our methods to construct robust confidence
sets under economically-motivated restrictions on how the pre-trends relate to the post-
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treatment violations of parallel trends. Our tools can also be used to to conduct sensitivity
analyses in which the researcher reports confidence sets under varying restrictions on the
possible differences in trends. For example, if the researcher suspects that the confounding
factors in the post-treatment periods are similar in magnitude to those in the pre-treatment
period, then it may be reasonable to impose that the post-treatment violations of parallel
trends are no larger than the maximum pre-treatment violation of parallel trends. As a sensi-
tivity analysis, the researcher might also report confidence sets that allow the post-treatment
maximum violations of parallel trends to be up to M̄ times larger than the maximum pre-
treatment violation for different values of M̄ . Performing such sensitivity analyses makes
clear what must be assumed about the possible differences in trends in order to draw specific
causal conclusions. We provide an R package, HonestDiD, that implements our recommended
methods.1 We illustrate our recommended approach with applications to two recently pub-
lished papers, in which we show how the choice of the restrictions ∆ can be tailored to the
economic context.

Related literature: The approach in this paper builds on the foundational partial identi-
fication analysis for DiD in Manski and Pepper (2018). Manski and Pepper consider identifi-
cation under researcher-specified bounds on the magnitude of δpost (what they call “bounded
DiD variation”), and calibrate these bounds using the maximal pre-treatment violation of
parallel trends in their empirical application on the effects of right-to-carry gun laws.2 One
of our leading classes of restrictions, ∆RM , formalizes this calibration approach by bound-
ing the magnitude of post-treatment violations of parallel trends by M̄ times the maximal
pre-treatment violation. Our framework also allows for many other intuitive restrictions —
such as bounds on how far δ can deviate from linearity — and it can be applied to a variety
of difference-in-differences estimators, including recent proposals for settings with staggered
treatment timing. Most importantly, while Manski and Pepper (2018) provide a framework
for identification, we provide inference methods to construct uniformly valid confidence sets
for the treatment effect of interest. This allows applied researchers to account for statistical
uncertainty in their analyses, which can be important since event-study coefficients are often
imprecisely estimated in practice.

Several other recent papers consider various relaxations of the parallel trends assump-
tion. Keele, Small, Hsu and Fogarty (2019) develop techniques for testing the sensitivity

1The latest version of the R package can be downloaded by visiting http://github.com/
asheshrambachan/HonestDiD.

2Manski and Pepper (2018) also consider “bounded time” and “bounded state” restrictions that bound how
much the mean of Y p0q can differ either across treatment groups or within-groups over time. Such restrictions
could also be incorporated into our framework by augmenting the vector β̂ to include group-specific sample
averages.
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of DiD designs to violations of the parallel trends assumption, but they do not incorporate
information from the observed pre-trends in their sensitivity analysis. Empirical researchers
commonly adjust for the extrapolation of a linear trend from the pre-treatment periods when
there are concerns about violations of the parallel trends assumption, which is valid if the
difference in trends is exactly linear (e.g., Dobkin, Finkelstein, Kluender and Notowidigdo,
2018; Goodman-Bacon, 2018, 2021; Bhuller, Havnes, Leuven and Mogstad, 2013). Our meth-
ods nest this approach as a special case, but allow for valid inference under less restrictive
assumptions about the class of possible differences in trends (such as when δ is only approx-
imately linear). Freyaldenhoven et al. (2019) propose a method that allows for violations of
the parallel trends assumption but requires an additional covariate that is affected by the
same confounding factors as the outcome but not by the treatment of interest. Ye, Keele,
Hasegawa and Small (2020) consider partial identification of treatment effects when there
exist two control groups whose outcomes have a bracketing relationship with the outcome
of the treated group. Leavitt (2020) proposes an empirical Bayes approach calibrated to
pre-treatment differences in trends, and Bilinski and Hatfield (2020) and Dette and Schu-
mann (2020) propose approaches based on pre-tests for the magnitude of the pre-treatment
violations of parallel trends.

Our methods address several concerns related to current empirical practice in difference-
in-differences and event-study designs. First, pre-trends tests may be underpowered against
meaningful violations of parallel trends, potentially leading to severe undercoverage of con-
ventional confidential intervals (Freyaldenhoven et al., 2019; Bilinski and Hatfield, 2020;
Kahn-Lang and Lang, 2020; Roth, Forthcoming). Second, statistical distortions from pre-
trends tests may further undermine the performance of conventional inference procedures
(Roth, Forthcoming). Third, parametric approaches to controlling for pre-existing trends
may be sensitive to functional form assumptions (Wolfers, 2006; Lee and Solon, 2011). We
address these issues by providing tools for inference that do not rely on an exact paral-
lel trends assumption, incorporate statistical uncertainty about the estimated event-study
coefficients, and make clear the mapping between the researcher’s assumptions about the
potential differences in trends and the strength of their causal conclusions.

Our work complements a growing literature on the causal interpretation of event-study
coefficients in two-way fixed effects models in the presence of staggered treatment timing
and heterogeneous treatment effects (Borusyak and Jaravel, 2016; Athey and Imbens, 2021;
Goodman-Bacon, 2021; Callaway and Sant’Anna, 2020; de Chaisemartin and D’Haultfœuille,
2020; Sun and Abraham, 2020). A key finding is that regression coefficients from conventional
approaches may not produce convex weighted averages of treatment effects even if parallel
trends holds. Several alternative estimators have been proposed that consistently estimate
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interpretable causal estimands under a suitable parallel trends assumption. Our methodology
can be used in conjunction with these alternative estimators to assess their sensitivity to
violations of the corresponding parallel trends assumption; see Section 2.1 for additional
details.

More broadly, our work contributes to a larger econometric literature that uses partial
identification to provide empirical researchers with tractable tools to conduct inference under
assumptions that may be more credible in empirical practice; see, for example, Manski (2003,
2007, 2013), Tamer (2010), Ho and Rosen (2017), and Molinari (2020) for reviews.

2 Model set-up

2.1 Event-study Coefficients

We suppose that the researcher has estimated a vector of “event-study coefficients” β̂n P
R¯
T`T̄ , which can be partitioned into vectors of coefficients corresponding with the pre-

treatment and post-treatment periods, β̂n “ pβ̂1n,pre, β̂1n,postq, where β̂n,pre P R¯
T and β̂n,post P

RT̄ . Event-study estimates of this form arise from non-staggered DiD as well as a variety of
related estimators, as we illustrate with several examples

Example 1 (Non-staggered DiD). Consider the canonical DiD setting in which we have a
balanced panel of units from period t “ ´

¯
T, ..., T̄ , and units with Di “ 1 receive a treatment

beginning in period t “ 1, while units with Di “ 0 never receive the treatment. It is common
to report difference-in-differences estimates of the form

β̂s “ pȲs1 ´ Ȳs0q ´ pȲ01 ´ Ȳ00q,

where Ȳsd is the sample mean of the outcome for units with Di “ d in period t “ s.
Intuitively, β̂s compares the change in the mean outcome between period 0 and period s for
the treated and comparison units. In this setting, the estimates β̂s are numerically equivalent
to the OLS coefficients from the regression

Yit “ λi ` φt `
ÿ

s‰0

βs ˆ 1rt “ ss ˆDi ` εit. (2)

In this case, β̂post collects the estimated coefficients corresponding with treated periods,
pβ̂1, ..., β̂T̄ q, while β̂pre collects the estimated coefficients corresponding with periods before
treatment pβ̂´

¯
T , ...β̂´1q. N
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Example 2 (Staggered DiD). Event-study coefficients can also be obtained from more com-
plicated DiD procedures. For example, in settings with staggered treatment timing, Callaway
and Sant’Anna (2020) propose event-study estimates of the form

β̂r “
ÿ

g

wgzATT pg, g ` rq,

where zATT pg, tq is a difference-in-differences estimate that compares the evolution of the
outcome for units first treated at period g to units first-treated after period t between time
periods g ´ 1 and t, and the wg are weights that sum to one (e.g. proportional to sample
size). In this case, β̂post collects the values of β̂r for r ě 0 (i.e. estimates where one of
the groups is treated), and β̂pre collects the values of β̂r for values of r ă 0. Several other
related procedures have been proposed for constructing event-study coefficients in contexts
with staggered treatment timing; see de Chaisemartin and D’Haultfœuille (2021) and Roth,
Sant’Anna, Bilinski and Poe (2022) for reviews. N

Example 3 (Other related estimators). Other examples of estimators that can be used to
produce event-studies coefficients of the form considered here include the GMM procedure
proposed by Freyaldenhoven et al. (2019), instrumental variables event-studies (Hudson, Hull
and Liebersohn, 2017), as well estimators that flexibly control for differences in covariates
between treated and comparison groups (e.g., Heckman, Ichimura, Smith and Todd, 1998;
Abadie, 2005; Sant’Anna and Zhao, 2020). N

2.2 Causal Decomposition

Under mild regularity conditions, all of the estimators described above will be asymptotically
normally distributed, satisfying

?
npβ̂n ´ βq Ñ N p0, Σ˚q for some parameter vector β. We

assume the parameter vector β satisfies the following causal decomposition.

Assumption 1. The parameter vector β can be decomposed as

β “

˜

τpre

τpost

¸

loooomoooon

“: τ

`

˜

δpre

δpost

¸

loooomoooon

“: δ

with τpre “ 0. (3)

The first term, τ , represents the treatment effects of interest. We assume the treatment has
no causal effect prior to its implementation, so τpre “ 0. The second term, δ, represents the
difference in trends between the treated and comparison groups that would have occurred
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absent treatment. The parallel trends assumption imposes that δpost “ 0, and therefore
βpost “ τpost under parallel trends.

Example: Non-staggered DiD (continued) Suppose the observed outcome satisfies
Yit “ DiYitp1q`p1´DiqYitp0q, where Yitp1q and Yitp0q are respectively the potential outcomes
when unit i is ultimately treated / not treated. Assume further that there is no anticipation
of treatment, so that Yitp1q “ Yitp0q for all t ă 1. Then, for any s, under mild regularity
conditions β̂s will be consistent for

βs “ τATT,s ` E rYisp0q ´ Yi0p0q |Di “ 1s ´ E rYisp0q ´ Yi0p0q |Di “ 0s
loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

Differential trend “: δs

,

where τATT,s “ E rYisp1q ´ Yisp0q|Di “ 1s is the average treatment effect on the treated in
period s, and δs is the difference in trends in potential outcomes between period 0 and period
s.3 Since the no-anticipation assumption implies that τATT,s “ 0 for s ă 0, this yields the
decomposition (3). N

Example: Staggered DiD (continued) Likewise, in the staggered DiD context, de-
fine Yitpgq to be the potential outcome for unit i in period t if they are first treated at
period g and Yitp8q to be the never-treated potential outcome. Then β̂r will be consis-
tent for the parameter βr “ τr ` δr, where τr “

ř

g wgATT pg, g ` rq and ATT pg, g `

rq “ E rYi,g`rpgq ´ Yi,g`rp8q|Gi “ gs is the ATT in period g ` r for units first treated
at period g. Likewise δr “

ř

wgδg,g`r, where δg,g`r “ E rYi,g`rp8q ´ Yi,g´1p8q|Gi “ gs ´

E rYi,g`rp8q ´ Yi,g´1p8q|Gi ą g ` rs is the difference in trends in never-treated potential out-
comes between units first treated at period g and units first treated after period g`r. Under
a no-anticipation assumption, τr “ 0 for r ă 0, which again yields the decomposition (3). N

Example: Other related estimators (continued) We can decompose β as in (3) for
other estimators as well. For example, for event-study IVs (with non-staggered timing), τpost
is a vector containing the local average treatment effect for each period, and δ represents the
violation of the exclusion restriction at each period. For methods that flexibly control for
covariate differences between treated and comparison groups, τpost is again a vector of ATTs,
and δpost represents a weighted average (across covariates) of the violation of the conditional
parallel trends assumption. N

3We focus on the ATT as the target parameter, as in most of the DiD literature. If one is interested in
the population-wide average treatment effect (ATE), one could obtain bounds on the ATE under restrictions
on treatment effect heterogeneity, or other assumptions that allow one to bound the treatment effects for
untreated units; see Manski and Pepper (2013) for an insightful discussion.
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2.3 Target parameter and identification

We suppose the target parameter is a linear combination of the post-treatment causal effects,
θ :“ l1τpost for some known T̄ -vector l. For example, θ equals the t-th period causal effect
τt when the vector l equals the t-th standard basis vector. Similarly, θ equals the average
causal effect across all post-treatment periods when l “

`

1
T̄
, ..., 1

T̄

˘1.
We obtain partial identification of θ by assuming that δ lies in a researcher-specified set

of possible differences in trends ∆ Ď R¯
T`T̄ . This nests the usual parallel trends assumption

as the special case with ∆ “ tδ : δpost “ 0u. Since δpre “ βpre is identified, the assumption
that δ “ pδ1pre, δ1postq1 P ∆ restricts the possible values of δpost given the identified value of the
pre-treatment difference in trends δpre.

It is natural to place restrictions on the relationship between δpre and δpost, since applied
researchers frequently test the null hypothesis δpre “ 0 in order to assess the plausibility of
the assumption that δpost “ 0. Our identification framework, which generalizes the partial
identification framework in Manski and Pepper (2018), thus helps formalize the intuition
motivating pre-trends testing.

Under the assumption that δ P ∆ ‰ tδ : δpost “ 0u, the parameter θ will typically be
set-identified. The identified set is the set of values for θ that are consistent with a given
value of β under the restriction δ P ∆,

Spβ,∆q :“

#

θ : Dδ P ∆, τpost P RT̄ s.t. l1τpost “ θ, β “ δ `

˜

0

τpost

¸+

. (4)

When ∆ is a closed and convex set, the identified set has a simple characterization.

Lemma 2.1. If ∆ is closed and convex, then Spβ,∆q is an interval in R, Spβ,∆q “
rθlbpβ,∆q, θubpβ,∆qs, where

θlbpβ,∆q :“ l1βpost ´
´

max
δ
l1δpost, s.t. δ P ∆, δpre “ βpre

¯

looooooooooooooooooooooomooooooooooooooooooooooon

“:bmaxpβpre,∆q

, (5)

θubpβ,∆q :“ l1βpost ´
´

min
δ
l1δpost, s.t. δ P ∆, δpre “ βpre

¯

loooooooooooooooooooooomoooooooooooooooooooooon

“:bminpβpre,∆q

. (6)

Proof. Re-arranging terms in (4), the identified set can be equivalently written as Spβ,∆q “
tθ : Dδ P ∆ s.t. δpre “ βpre, θ “ l1βpost ´ l

1δpostu. The result is then immediate.

Example: Non-staggered DiD (continued) In the three-period DiD model (
¯
T “ T̄ “

1), the ATT in period 1 is point identified if we assume that the counterfactual post-treatment
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difference in trends δ1 is exactly zero (parallel trends). Instead, we assume δ “ pδ´1, δ1q
1 P ∆

for some set ∆. When ∆ is closed and convex, the identified set for the ATT in period 1 is
rβ1 ´ bmax, β1 ´ bmins, where bmax “ maxδ δ1 s.t pδ´1, δ1q

1 P ∆ is the maximum possible bias
of β̂1 given δ´1 “ β´1 and bmin is defined analogously. N

Additionally, it is immediate from the definition of the identified set in (4) that if ∆ is
the finite union of sets, ∆ “

ŤK
k“1 ∆k, then its identified set is the union of the identified

sets for its subcomponents,

Spβ,∆q “
K
ď

k“1

Spβ,∆kq. (7)

This fact will be useful, since several empirically relevant choices of ∆ can be written as the
finite union of convex sets as we will see below.

2.4 Possible choices of ∆

The class of possible differences in trends ∆ must be specified by the researcher, and the
choice of ∆ will depend on the economic context. We highlight several possible choices of
∆ that may be reasonable in empirical applications and formalize intuitive arguments that
are commonly made by applied researchers regarding possible violations of parallel trends.
Throughout our discussion, we write δpre “ pδ´

¯
T , ...δ´1q

1 and δpost “ pδ1, ...δT̄ q
1, with δ0

normalized to zero. This aligns the notation with Example 1, where δ corresponds to the
difference in trends between treated and comparison groups, and δ0 is normalized to zero.

2.4.1 Bounding Relative Magnitudes

In empirical applications, researchers may be willing to assume that the confounding factors
which produce non-parallel trends in the post-treatment periods are not too much larger
in magnitude than the confounding factors in the pre-treatment periods. In their empirical
application to right-to-carry gun laws, Manski and Pepper (2018) operationalize this intuition
by calibrating bounds on |δ1| to the largest violations of parallel trends in the pre-treatment
period (see their Table 3).4 Such a restriction can be formalized in our framework by imposing
that δ P ∆RMpM̄q for M̄ ě 0, where

∆RM
pM̄q “ tδ : @t ě 0, |δt`1 ´ δt| ď M̄ ¨max

să0
|δs`1 ´ δs|u.

4In their application, Manski and Pepper (2018) observe the outcome for the entire population of interest,
and thus their observed pre-treatment data corresponds with δpre rather than β̂pre.

11



∆RMpM̄q bounds the maximum post-treatment violation of parallel trends between consec-
utive periods by M̄ times the maximum pre-treatment violation of parallel trends. We use
the abbreviation RM for “relative magnitudes”. The choice ∆RMpM̄q may be reasonable if
the researcher suspects that possible violations of parallel trends are driven by confounding
economic shocks that are of a similar magnitude to confounding economics shocks in the
pre-period. When the number of pre-treatment and post-treatment periods is similar, a
natural benchmark may be M̄ “ 1, which bounds the worst-case post-treatment difference
in trends by the equivalent maximum in the pre-treatment period.

Example: Non-staggered DiD (continued) In the three-period DiD model (
¯
T “ T̄ “

1), assuming δ P ∆RMpM̄q “ tpδ´1, δ1q
1 : |δ1| ď M̄ |δ´1|u bounds the magnitude of δ1 based

on the magnitude of δ´1. The larger the magnitude of the pre-treatment violation in parallel
trends, |δ´1|, the wider the range of possible post-treatment violations of parallel trends. N

2.4.2 Smoothness restrictions

In other empirical settings, researchers may be worried about confounding from secular
trends (e.g. long-run changes in labor supply) that they suspect evolve smoothly over time.
In such settings, it is common for empirical researchers to control for a linear group-specific
time trend.5 This approach is valid if the difference in trends is linear, i.e. ∆ “ tδ : δt “

γ ¨ t, γ P Ru. There are often concerns, however, that the linear specification is not exactly
correct (Wolfers, 2006; Lee and Solon, 2011). A natural relaxation is therefore to impose
only that the differential trends evolve smoothly over time by bounding the extent to which
its slope may change across consecutive periods. Such a restriction can be formalized in our
framework by imposing that δ P ∆SDpMq for M ě 0, where

∆SD
pMq :“ tδ : |pδt`1 ´ δtq ´ pδt ´ δt´1q| ďM, @tu. (8)

The parameter M ě 0 governs the amount by which the slope of δ can change between
consecutive periods, and thus bounds the discrete analog of the second derivative. We use
the abbreviation SD for “second differences” or “second derivative.”6 In the special case where
M “ 0, ∆SDp0q requires that the difference in trends be exactly linear, which corresponds

5Specifically, researchers often augment specification (2) with group-specific linear trends, an approach
Dobkin et al. (2018) refer to as a “parametric event-study.” An analogous approach is to estimate a linear
trend using only observations prior to treatment, and then subtract out the estimated linear trend from the
observations after treatment (Bhuller et al., 2013; Goodman-Bacon, 2018, 2021).

6Restrictions on the second derivative of the conditional expectation function or density have been used
in regression discontinuity settings (Kolesár and Rothe, 2018; Frandsen, 2016; Noack and Rothe, 2020).
Smoothness restrictions are also used to obtain partial identification in Kim, Kwon, Kwon and Lee (2018).
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with the assumption underlying the parametric linear specification common in applied work.

Example: Non-staggered DiD (continued). In the three-period DiD model, assuming
the differential trend is exactly linear is equivalent to assuming ∆ “ tδ : δ1 “ ´δ´1u.
Assuming δ P ∆SDpMq requires only that the linear extrapolation be approximately correct,
δ1 P r´δ´1 ´M,´δ´1 `M s. N

2.4.3 Combining smoothness and relative magnitudes bounds

In some contexts, researchers may be willing to assume that the difference in trends evolves
relatively smoothly over time but may be unsure about the smoothness bound M ě 0 intro-
duced above. In such cases, it may be reasonable to assume that the possible non-linearities
in the post-treatment difference in trends are bounded by the observed non-linearities in the
pre-treatment difference in trends. This can be formalized with the restriction

∆SDRM
pM̄q “ tδ : @t ě 0, |pδt`1 ´ δtq ´ pδt ´ δt´1q| ď M̄ ¨max

să0
|pδs`1 ´ δsq ´ pδs ´ δs´1q|u,

which bounds the maximum deviation from a linear trend in the post-treatment period by
M̄ ě 0 times the equivalent maximum in the pre-treatment period. The set ∆SDRMpM̄q is
thus similar to ∆SDpMq introduced above, except it allows the magnitude of the possible
non-linearity to explicitly depend on the observed pre-trends.

2.4.4 Sign and monotonicity restrictions

Context-specific knowledge may sometimes also suggest sign or monotonicity restrictions on
the differential trend. For instance, if the policy of interest occurs at the same time as a
confounding policy change that we expect to have a positive effect on the outcome, we might
restrict the post-treatment bias to be positive, δ P ∆PB :“ tδ : δt ě 0 @t ě 0u. Likewise,
there may be secular pre-existing trends that we expect would have continued following
the treatment date.7 We may then wish to impose that the differential trend be increasing,
δ P ∆I :“ tδ : δt ě δt´1 @tu, or monotone with unknown sign, δ P ∆Mon :“ ∆IYp´∆Iq. Sign
and monotonicity restrictions may be combined with the previously discussed restrictions,
such as ∆SDPBpMq :“ ∆SDpMq X ∆PB, ∆SDIpMq :“ ∆SDpMq X ∆I , and ∆RMIpM̄q :“

∆RMpM̄q X∆I .
7Monotone violations of parallel trends are often discussed in applied work. For example, Lovenheim and

Willen (2019) argue that violations of parallel trends cannot explain their results because “pre-[treatment]
trends are either zero or in the wrong direction (i.e., opposite to the direction of the treatment effect).”
Greenstone and Hanna (2014) estimate upward-sloping pre-existing trends and argue that “if the pre-trends
had continued” their estimates would be upward biased.
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2.4.5 Polyhedral restrictions

Although the restrictions described above will be sensible in many empirical contexts, re-
searchers will often have context-specific knowledge that motivates alternative restrictions
than what we introduced above. To accommodate such cases, we consider the broad class of
∆s that can be written as polyhedra (sets defined by linear inequalities), or the finite union
of polyhedra.

Definition 1 (Polyhedral restriction). The class ∆ is polyhedral if it takes the form ∆ “

tδ : Aδ ď du for some known matrix A and vector d.

All of the examples described above can be written either as polyhedral restrictions or
finite unions of such restrictions. For instance, ∆SDpMq and ∆SDPBpMq can be written
directly as polyhedra.8 Likewise, ∆RMpM̄q or ∆SDRMpM̄q can be written as the finite union
of polyhedra, where each polyhedron corresponds with a different location for the maximum
pre-treatment violation.9

The class of (finite unions of) polyhedra is quite broad, and allows for a variety of other
restrictions that may be relevant in empirical work. For example researchers studying labor
market training and related programs may be concerned about Ashenfelter’s dip (Ashenfelter,
1978), in which earnings for the treated group trend downwards (relative to control) before
treatment and upwards afterwards. In this type of setting, researchers might naturally use a
polyhedral ∆ to impose i) restrictions on the signs of the pre-treatment and post-treatment
biases, as well as ii) restrictions on the magnitude of the rebound effect relative to the
pre-treatment shock.

2.5 Inferential Goal

As discussed above, the event study coefficients β̂n will satisfy
?
npβ̂n ´ βq Ñd N p0, Σ˚q

for a wide variety of commonly-used estimators. This suggests the finite-sample normal
approximation

β̂n «d N pβ, Σnq , (9)

where «d denotes approximate equality in distribution and Σn “ Σ˚{n. We will construct
confidence sets that are uniformly valid for all parameter values θ in the identified set when

8In our ongoing three-period difference-in-differences example, ∆SDpMq “ tδ : ASDδ ď dSDu for ASD “
ˆ

´1 1
1 ´1

˙

and dSD “ pM,Mq1. This generalizes naturally when there are multiple pre-periods and

multiple post-periods.
9For example, define the polyhedra ∆RM

s,` pM̄q “ tδ : @t ě 0, |δt`1´ δt| ď M̄pδs`1´ δsqu and ∆RM
s,´ “ tδ :

@t ě 0, |δt`1 ´ δt| ď ´M̄pδs`1 ´ δsqu. Then ∆RM pM̄q “
Ť

să0

`

∆RM
s,` pM̄q Y∆RM

s,´ pM̄q
˘

.
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the approximation in (9) holds exactly with Σn known. That is, we construct confidence
sets Cnpβ̂n,Σnq satisfying

inf
δP∆,τ

inf
θPSpδ`τ,∆q

Pβ̂n„N pδ`τ,Σnq
´

θ P Cnpβ̂n,Σnq

¯

ě 1´ α. (10)

In Section 3.3, we will show that finite-sample size control in the normal model in the sense
of (10) translates to uniform asymptotic size control over a large class of data-generating
processes when Σn is replaced by a consistent estimate Σ̂n. That is, we will show that the
constructed confidence sets further satisfy

lim inf
nÑ8

inf
PPP

inf
θPSpδP`τP ,∆q

PP
´

θ P Cnpβ̂n, Σ̂nq

¯

ě 1´ α. (11)

for a large class of distributions P such that δP P ∆ for all P P P .
We will focus on constructing confidence sets for the case where ∆ is a polyhedron. For

the case where ∆ is the finite union of polyhedra, a valid confidence set can be constructed
by taking the union of the confidence sets for each of its components.

Lemma 2.2. Suppose that for each k “ 1, ..., K, the confidence set Cn,kpβ̂n,Σnq satisfies
(10) with ∆ “ ∆k. Then the confidence set Cnpβ̂n,Σnq “

ŤK
k“1 Cn,kpβ̂n,Σnq satisfies (10)

with ∆ “
ŤK
k“1 ∆k.

In the next two sections, we introduce two approaches to obtain confidence sets satisfying
(10), with different desirable properties depending on the form of ∆. The first approach,
based on moment inequalities, accommodates a wide range of restrictions ∆ and has some
desirable asymptotic power guarantees. The second approach, based on fixed length con-
fidence intervals, can potentially offer finite-sample power improvements for certain special
classes of ∆ of interest, such as ∆SDpMq.

3 Inference using Moment Inequalities

In this section, we introduce a general approach for inference that has good asymptotic
properties over a large class of possible restrictions ∆. We show that inference on the
partially identified parameter θ “ l1τpost in this setting is equivalent to testing a system
of moment inequalities with a potentially large number of nuisance parameters that enter
the moments linearly. We consider an implementation based on the conditional approach
developed in ARP, which allows us to obtain computationally tractable confidence sets with
desirable power properties for many parameter configurations.
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3.1 Representation as a moment inequality problem with linear nui-

sance parameters

Consider the problem of conducting inference on θ “ l1τpost when ∆ takes the polyhedral
form ∆ “ tδ : Aδ ď du. We will develop tests that have exact size under the null hypothesis
H0 : θ “ θ̄, δ P ∆ when the normal approximation (9) holds exactly with known variance
matrix Σn. In Section 3.3, we will provide conditions under which size control in the finite
sample normal model translates to uniform asymptotic size control over a large class of
data-generating processes.

As a first step, we show that testing H0 is equivalent to testing a system of moment
inequalities with linear nuisance parameters in the normal model. Observe that if β̂n „
N pβ, Σnq for β satisfying (3), then Eβ̂n„N pδ`τ,Σnq

”

β̂n ´ τ
ı

“ δ. It follows that δ P ∆ “

tδ : Aδ ď du if and only if Eβ̂n„N pδ`τ,Σnq
”

Aβ̂n ´ Aτ
ı

ď d. Defining Yn “ Aβ̂n ´ d and
Lpost “ r0, Is1 to be the matrix such that τ “ Lpostτpost, it is immediate that the null
hypothesis H0 is equivalent to the composite null

H0 : Dτpost P RT̄ s.t. l1τpost “ θ̄ and Eβ̂n„N pδ`τ,Σnq rYn ´ ALpostτposts ď 0. (12)

Testing the null hypothesis H0 is therefore equivalent to testing that the moment inequalities
Eβ̂n„N pδ`τ,Σnq rYn ´ ALpostτposts ď 0 hold for some value of τpost satisfying l1τpost “ θ.

For the purposes of developing tests, it will be useful to re-cast this null hypothesis in
terms of moments involving an unrestricted nuisance parameter τ̃ of dimension T̄ ´ 1. By
applying a change of basis to the matrix ALpost, we can re-write the expression ALpostτpost
as Ã pθ, τ̃ 1q1 for τ̃ PT̄´1.10 The null H0 is then equivalent to

H0 : Dτ̃ P RT̄´1 s.t. E
”

Ỹnpθ̄q ´ X̃τ̃
ı

ď 0, (13)

where Ỹ pθ̄q “ Yn ´ Ãp¨,1qθ̄ and X̃ “ Ãp¨,´1q.11 Since Ỹnpθ̄q is normally distributed with
covariance matrix Σ̃n “ AΣnA

1 under the finite-sample normal model, testing H0 : θ “ θ̄, δ P

∆ is equivalent to testing a system of moment inequalities with linear nuisance parameters.
The testing problem (13) is a special case of the problem studied in ARP, which focuses on

10Let Γ be a square matrix with the vector l1 in the first row and remaining rows chosen so that Γ has

full rank. Define Ã :“ ALpostΓ
´1. Then ALpostτpost “ ÃΓτpost “ Ã

¨

˝

θ
Γp´1,¨qτpost
looooomooooon

:“τ̃

˛

‚. If T̄ “ 1, then τ̃ is

0-dimensional and should be interpreted as 0.
11We use the notation Vp¨,1q to denote the first column of a matrix V , and Vp¨,´1q to denote the matrix

containing all but the first column of V .
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testing null hypotheses of the form H0 : Dτ s.t. E rY pθq ´Xτ |Xs ď 0 (a.s.). Our setting is
a special case of this framework in which: i) the variable X takes the degenerate distribution
X “ X̃, and ii) Y pθq “ Ỹ pθq is linear in θ. This additional structure will play an important
role in the development of our asymptotic power results below.

3.2 Constructing conditional and hybrid confidence sets

We consider tests for the system of moment inequalities describe above using the conditional
and hybrid methods proposed by ARP. This is for both computational and efficiency reasons.
From the computational perspective, a practical challenge to testing the hypothesis (13) in
our setting is that the dimension of the nuisance parameter τ̃ is T̄ ´ 1, and thus will be
large if there are many post-treatment periods. For example, 5 of the 12 recent event-study
papers reviewed in Roth (Forthcoming) have T̄ ą 10. This renders many moment inequality
methods, especially those which rely on test inversion over a grid for the full parameter vector,
computationally infeasible. To tractably deal with the nuisance parameter, we consider tests
based on the conditional and hybrid approaches of ARP, which directly exploit the linear
structure of the hypothesis (13) to deliver computationally tractable tests even when the
number of post-treatment periods T̄ is large.12 From the perspective of power, we will show
that the tests proposed by ARP have (near-)optimal local asymptotic power in our setting
when an LICQ condition is satisfied.

We briefly sketch the construction of the conditional testing approach in our setting,
and refer the reader to ARP for full details. These tests are implemented in the R package,
HonestDiD, that accompanies the paper.

Conditional confidence sets. Suppose we wish to test (13) for some fixed θ̄. The con-
ditional testing approach considers tests based on the profiled test statistic

η̂ :“ min
η,τ̃

η s.t. Ỹnpθ̄q ´ X̃τ̃ ď σ̃n ¨ η, (14)

where σ̃n “
b

diagpΣ̃nq. This linear program selects the value of the nuisance parameters
τ̃ P RT̄´1 that minimizes the maximum studentized moment. Duality results from linear

12Other moment inequality methods have been proposed for subvector inference, but typically do not
exploit the linear structure of our setting — see, e.g, Romano and Shaikh (2008); Chernozhukov, Newey
and Santos (2015); Bugni, Canay and Shi (2017); Chen, Christensen and Tamer (2018); Kaido, Molinari and
Stoye (2019). Cho and Russell (2019), Gafarov (2019), and Flynn (2019) also provide methods for subvector
inference with linear moment inequalities, but in contrast to our approach require a linear independence
constraint qualification (LICQ) assumption for size control. More recently, Cox and Shi (2022) introduced
new tests for the linear moment inequality setting in ARP; see Section 3.5 below for further discussion.
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programming (e.g. Schrijver (1986), Section 7.4) imply that the value η̂ obtained from the
primal program (14) equals the optimal value of the dual program13

η̂ “ max
γ

γ1Ỹnpθ̄q s.t. γ1X̃ “ 0, γ1σ̃n “ 1, γ ě 0. (15)

If a vector γ˚ is optimal in the dual problem above, then it is a vector of Lagrange multipliers
for the primal problem. Standard results in linear programming imply that the optimum
is always obtained at one of the finite set of vertices, V pΣnq (also known as the set of
basic feasible solutions). We denote by V̂n Ă V pΣnq the set of optimal vertices of the dual
program.14

To construct critical values, ARP use the fact that the distribution of η̂ has a trun-
cated normal distribution conditional on the event that γ˚ is optimal in the dual problem.
Specifically,

η̂ | tγ˚ P V̂n, Sn “ su „ ξ | ξ P rvlo, vups,

where ξ „ N
´

γ1˚µ̃pθ̄q, γ
1
˚Σ̃nγ˚

¯

, µ̃pθ̄q “ E
”

Ỹnpθ̄q
ı

, Sn “ pI ´ Σ̃nγ˚
γ1˚Σ̃nγ˚

γ1˚qỸnpθ̄q, and vlo, vup

are known functions of Σ̃n, s, γ˚ (see Lemma 2 in ARP).15 Intuitively, the distribution of η̂
depends on the vector µ̃pθ̄q, and so to eliminate the dependence on the components of µ̃pθ̄q
other than γ1µ̃pθ̄q, we condition on Sn, which is a sufficient statistic for the components of
µ̃pθ̄q that are orthogonal to γ1˚µ̃pθ̄q.

ARP show that all quantiles of the conditional distribution of η̂ in the previous display
are increasing in γ1˚µ̃pθ̄q. Moreover, the null hypothesis (13) implies γ1˚µ̃pθ̄q ď 0. To see why
this is the case, note that the definition of the dual problem (15) implies that γ˚ ě 0 and
γ1˚X̃ “ 0, whereas the null hypothesis implies that there exists τ̃ such that µ̃pθ̄q´X̃τ̃ ď 0. It
follows that γ1˚µ̃pθ̄q “ γ1˚pµ̃pθ̄q´ X̃τ̃q ď 0 under the null. The ARP conditional test therefore
uses the critical value maxt0, cC,αu, where cC,α is the 1´α quantile of the truncated normal
distribution ξ|ξ P rvlo, vups under the worst-case assumption that γ1˚µ̃pθ̄q “ 0.16 We denote

13Technically, the duality results require that η̂ be finite. However, one can show that η̂ is finite with
probability 1, unless the span of X̃ contains a vector with all negative entries, in which case the identified
set for θ is the real line. We therefore trivially define our test never to reject if η̂ “ ´8.

14In general, there may not be a unique solution to the dual program. ARP show that in the context of
the finite sample normal, conditional on any one vertex of the dual program’s feasible set being optimal,
every other vertex is optimal with either probability 0 or 1. In the finite sample normal model it thus suffices
to condition on the event that a vector γ˚ P V̂ . Our conditions for asymptotic validity of the conditional
test below, however, ensure that the optimal vertex will be unique w.p.a. 1.

15The cutoffs vlo and vup are the maximum and minimum of the set tx : x “ maxγPFn
γ1ps` Σ̃nγ˚

γ1˚Σ̃nγ˚
xqu

when γ1˚Σ̃nγ˚ ‰ 0, where Fn is the feasible set of the dual program (15). When γ1˚Σ̃nγ˚ “ 0, we define
vlo “ ´8 and vup “ 8, so the conditional test rejects if and only if η̂ ą 0.

16As noted in ARP, the truncation at 0 is not necessary for the conditional test to control size in the finite
sample normal model, but it simplifies asymptotic arguments. It also prevents the test from rejecting when
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by ψCα pβ̂n, A, d, θ̄,Σnq an indicator for whether the conditional test rejects the null that θ “ θ̄

for ∆ “ tδ : Aδ ď du.
We can then form a confidence set for θ by test inversion, CCα,npβ̂n,Σnq :“ tθ̄ : ψCα pβ̂n, A, d, θ̄,Σnq “

0u. The construction of the conditional test implies that Eβ̂n„N pδ`τ,Σnq
”

ψCα pβ̂n, A, d, l
1τpost,Σnq

ı

ď

α for any δ P ∆. It therefore follows that CCα,npβ̂n,Σnq satisfies the finite-sample coverage re-
quirement (10). In Section 3.3 below, we show that coverage in the normal model translates
to uniform asymptotic coverage over a large class of DGPs.

Example 4. An instructive example is when T̄ “ 1 (so that there are no nuisance parame-
ters), and Σ̃n “ I. Then η̂ “ maxj Ỹn,j is the maximum component of Ỹn, vlo “ maxj‰ĵ Ỹn,j

is the second-largest element of Ỹn (where ĵ denotes the index of the max), and vup “ 8.
Thus, the conditional test rejects when η̂ exceeds the 1´ α quantile of the standard normal
distribution truncated to rvlo,8q. Intuitively, this means that the conditional test will tend
to reject when the maximum sample moment is far enough away from the second-largest
sample moment. Two special cases are worth special consideration. First, consider the case
where in population one moment is violated and the remaining moments are very slack, e.g.
µ̃1 ą 0 while µ̃j ! 0 for j ‰ 1. Then with high probability η̂ will equal Ỹn,1 and vlo will
be very negative. Thus, the conditional test will behave similarly to a one-sided t-test using
Ỹn,1, which can be shown to be the most powerful test in the finite-sample normal model in
this example. On the other hand, if µ1 « µ2 ą 0, then the maximum and second-largest
sample moments (i.e. η̂ and vlo) will be close together with high probability, so the condi-
tional test may not reject with substantial probability even if both µ1 and µ2 are large, and
thus the conditional test may have poor power. To improve power in these settings where
the binding and non-binding moments are close together (relative to sampling variation),
ARP introduce a “hybrid” test, which we describe next.

Hybrid confidence sets. ARP propose a “hybrid” test that combines the conditioning
approach above with a test based on the “least-favorable” assumption that µ̃pθ̄q “ 0. In
particular, ARP show that the distribution of η̂ under the null is bounded above (in the sense
of first-order stochastic dominance) by the distribution of η̂ when µ̃pθ̄q “ 0 (see Section 3.2
of ARP). One can therefore construct a size-κ least-favorable (LF) test in the finite-sample
normal model that rejects whenever η̂ exceeds the 1 ´ κ quantile of maxγPV pΣq γ

1ξ, where
ξ „ N

´

0, Σ̃n

¯

. This critical value, which we will denote by cLF,κ can easily be calculated
by simulation. For 0 ă κ ă α, the ARP conditional-LF hybrid test is defined to reject if a
first-stage, size-κ LF test rejects. If this first-stage test does not reject, then in the second

all moments are satisfied in sample.
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stage the hybrid test conducts a modified version of the size-
`

α´κ
1´κ

˘

conditional test that also
conditions on the event that the first-stage LF test did not reject. In particular, by similar
logic as for the conditional test, we have that

η̂ | tγ˚ P V̂n, Sn “ s, η̂ ď cLF,κu „ ξ | ξ P rvlo, vupH s,

where vupH “ mintvlo, cLF,κu (see Section 3.4 of ARP). The second-stage of the hybrid test
rejects if η̂ exceeds the critical value for the size-

`

α´κ
1´κ

˘

conditional test that uses vupH instead of
vup. We will denote by ψC-LF

κ,α pβ̂n, A, d, θ̄,Σnq an indicator for whether the hybrid test rejects
at a particular value θ̄, and denote by CC-LF

κ,α,n pβ̂n,Σnq the confidence set that collects the values
of θ̄ for which the hybrid test does not reject. As with the conditional test, by construction
the hybrid confidence set satisfies that coverage criterion (10) in the finite-sample normal
model. In our implementation below, we use κ “ α{10, following ARP.

3.3 Uniform asymptotic size control

We now provide conditions under which size control in the finite sample normal model
translates to uniform asymptotic size control over a large class of data-generating processes
P under which β̂n is asymptotically normally distributed and Σn is replaced with a consistent
estimator Σ̂n. In particular, we provide sufficient conditions on β̂n, Σ̂n, and ∆ such that the
higher-level conditions for size control in ARP are satisfied (Proposition 2 in ARP).

Throughout this section, we fix ∆ “ tAδ ď du for some A with all non-zero rows, and
assume that ∆ is non-empty. We consider a class of data-generating processes, indexed by
P P P , under which

?
npβ̂n ´ βP q is asymptotically normal, where βP satisfies the causal

decomposition in (3), i.e. βP “ δP ` LpostτP,post for δP P ∆ and τP,post P R¯
T . The parameter

of interest is θP :“ l1τP,post, for some fixed l ‰ 0. Our first assumption imposes uniform
asymptotic normality of β̂n.

Assumption 2. Let BL1 denote the set of Lipschitz functions which are bounded by 1 in
absolute value and have Lipschitz constant bounded by 1. We assume

lim
nÑ8

sup
PPP

sup
fPBL1

ˇ

ˇ

ˇ
EP

”

fp
?
npβ̂n ´ βP qq

ı

´ E rfpξP qs
ˇ

ˇ

ˇ
“ 0,

where ξP „ N p0, ΣP q, and βP “ δP ` LpostτP,post for δP P ∆ and τP,post P RT̄ .

Convergence in distribution is equivalent to convergence in bounded Lipschitz metric (see
Theorem 1.12.4 in van der Vaart and Wellner (1996)), so Assumption 2 formalizes the notion
of uniform convergence in distribution of

?
npβ̂n ´ βP q to a N p0, ΣP q variable under P .
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Our next two assumptions require that the eigenvalues of the asymptotic variance of β̂n
be bounded above and away from zero, and that there exists a uniformly consistent estimator
for the variance of β̂n.

Assumption 3. Let S denote the set of matrices with eigenvalues bounded below by
¯
λ ą 0

and above by λ̄ ě
¯
λ. For all P P P, ΣP P S.

Assumption 4. We have an estimator Σ̂n that is uniformly consistent for ΣP ,

lim
nÑ8

sup
PPP

PP
´

||Σ̂n ´ ΣP || ą ε
¯

“ 0,

for all ε ą 0.

Finally, we impose some regularity conditions on the matrix A.

Assumption 5. At least one of the following holds.

(A) For k1 ` k2 “ dimpδq, the matrix A can be written as TQ, where Q has full row-rank

and T “

¨

˚

˝

Ik1 0

´Ik1 0

0 Ik2

˛

‹

‚

. (We allow for the case where one of k1 or k2 is 0, in which

case the zero-dimensional blocks can be ignored).

(B) Let γ̄1, ..., γ̄K be the elements of V pIq. Then for all k, either γ̄1kA “ 0 or infaě0 infj‰k ||pγ̄k´

aγ̄jq
1A|| ą 0.

Part (A) of Assumption 5 imposes that the only source of degeneracy in the rows of A is
matching inequalities of opposite signs. This is the case for many restrictions of interest,
such as ∆SDpMq and the polyhedra that form ∆RMpM̄q. Part (B) provides an alternative,
higher-level condition that ensures that for distinct vertices γ̄k, γ̄j, the random variables γ̄1jỸ
and γ̄1kỸ are not perfectly positively correlated with each other. Assumption 5 is used to
guarantee that degeneracy in the asymptotic distribution of γ1Ỹ arises only from known
degeneracies in A. We note, however, that Assumption 5 does not rule out settings where
the solutions to the bounds of the identified set given in equation (5) and (6) are non-unique
or degenerate (i.e., where the extreme points for θ occur at “flat faces” of the identified set).
If A is full-rank, for example, then Assumption 5(A) holds trivially with T “ I, and thus
the mean of the moments µ̃pθ̄q is completely unrestricted.17

17Some values of A satisfying Assumption 5 may imply that certain pairs of moments cannot simultaneously
be binding. For example, the restriction that |δ1| ď 1 can be represented as δ1 ď 1 and ´δ1 ď 1, which
satisfies Assumption 5(A), but clearly both moments cannot simultaneously bind. Nevertheless Assumption
5(A) is compatible with “flat faces” even when A is not full rank. For example, if ∆ corresponds with the
restrictions |δ1| ď 1 and |δ2| ď 1, then the extreme points for θ “ τ2 occur at flat faces of the identified set
for pτ1, τ2q.
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The assumptions stated above are sufficient for the conditions in Proposition 2 in ARP,
which establishes uniform size control for the conditional and hybrid tests.

Proposition 3.1. Suppose Assumptions 2 to 5 hold. Then the conditional and LF-hybrid
tests uniformly control size. That is, for any α ă 0.5,

lim sup
nÑ8

sup
PPP

EP
„

ψCα pβ̂n, A, d, θP ,
1

n
Σ̂nq



ď α.

lim sup
nÑ8

sup
PPP

EP
„

ψC-LF
κ,α pβ̂n, A, d, θP ,

1

n
Σ̂nq



ď α.

3.4 Uniform asymptotic consistency

We next provide conditions under which the conditional and hybrid tests are uniformly
asymptotically consistent, in the sense that power against fixed alternatives outside the
identified set converges uniformly to 1. To establish uniform consistency of the conditional
and hybrid tests, we strengthen Assumptions 2 and 3 as follows.

Assumption 6. Let Wn “ ppβ̂n ´ βP q
1, pvecpΣ̂nq ´ vecpΣP qq

1q1, where vecpΣq is the vector
of the elements of the matrix Σ. We assume

lim
nÑ8

sup
PPP

sup
fPBL1

ˇ

ˇ

ˇ

ˇEP
“

fp
?
nWnq

‰

´ E
“

fpξ`P q
‰
ˇ

ˇ

ˇ

ˇ “ 0,

where ξ`P „ N p0, VP q, VP “

˜

ΣP VP,βΣ

VP,Σβ VP,Σ

¸

.

Assumption 7. For all P P P, ΣP P S and the matrix VP defined in Assumption 6 lies in a
compact set V. Additionally, pΣP ´VP,βΣV

:

P,ΣVP,Σβq has eigenvalues bounded below by λ̃ ą 0,
where : denotes the Moore-Penrose inverse.

Assumption 6 strengthens Assumption 2 to require that β̂n and Σ̂n have a joint normal
asymptotic distribution. Although somewhat more restrictive, event-study estimates are of-
ten estimated via OLS, and standard covariance estimators for OLS, including cluster-robust
variance estimators, produce asymptotically normal estimates as the number of clusters grows
large (Hansen, 2007; Stock and Watson, 2008; Hansen and Lee, 2019). We do not impose
that the asymptotic distributions of β̂n and Σ̂n are independent, as would occur in linear
models if the linear model is properly specified. Assumption 7 strengthens Assumption 3 to
require that the asymptotic distribution of β̂n is not perfectly asymptotically colinear with
Σ̂n.
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Under the imposed assumptions, we obtain uniform consistency of the conditional and
hybrid tests.

Proposition 3.2. Suppose Assumptions 4 to 7 hold. Then for any x ą 0 and α ă 0.5,

lim
nÑ8

inf
PPP

EP
„

ψCα pβ̂n, A, d, θ
ub
P ` x,

1

n
Σ̂nq



“ 1

lim
nÑ8

inf
PPP

EP
„

ψC-LF
κ,α pβ̂n, A, d, θ

ub
P ` x,

1

n
Σ̂nq



“ 1,

where θubP “ supSpβP ,∆q is the upper bound of the identified set. The analogous result holds
replacing θubP ` x with θlbP ´ x for θlbP “ inf SpβP ,∆q.

3.5 Optimal local asymptotic power

We next provide conditions under which the conditional test has optimal local asymptotic
power. We first state the conditions and our formal results, and then provide several examples
highlighting when the assumptions will and will not hold.

3.5.1 Main results

We begin by defining the linear independence constraint qualification (LICQ). Recall that
the upper bound of the identified set is given by

θubpβ,∆q “ l1βpost ´
´

min
δ
l1δpost, s.t. Aδ ď d, δpre “ βpre

¯

.

Since δpost “ βpost ´ τpost, we can re-write the upper bound as a maximization over τpost,

θubpβ,∆q “ max
τpost

l1τpost, s.t. ´ Ap¨,postqτpost ď d´ Aβ, (16)

where Ap¨,postq contains the columns of A corresponding with δpost. Let τ˚post denote a solution
to the optimization for θubpβ,∆q in (16), and let B˚ denote the indices of the binding
constraints, so that ´ApB˚,postqτ˚post “ dB˚´ApB˚,¨qβ and ´Ap´B˚,postqτ˚post ă d´B˚´Ap´B˚,¨qβ.

Definition 2 (LICQ). We say that the linear independence constraint qualification (LICQ)
holds in direction l if there exists a solution τ˚post to (16) such that the gradient of the
binding constraints with respect to τpost, ´ApB˚,postq, has full row rank.18 We define LICQ
in the direction ´l analogously for the optimization that replaces max with min in (16).

18The definition of LICQ in Kaido et al. (2021) would require that this condition holds for all solutions
τ˚post. For our results, however, it is sufficient for the condition to hold for some solution τ˚post.
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For ε ą 0, we define Pε to be the set of distributions P P P such that LICQ holds in the
direction l and the non-binding constraints are slack by at least ε, i.e. ´Ap´B˚,postqτ˚post ă
d´ AβP ´ ε.

Our next result states that for P P Pε, the local power of the conditional test converges
to the power envelope for tests that control size in the finite sample normal model. To state
this result formally, we define Iαp∆,Σnq to be the collection of confidence sets that control
size in the finite sample normal model, i.e. confidence sets satisfying (10).

Proposition 3.3. Suppose Assumptions 2 to 4 hold. Let θubP “ supSpβP ,∆q. Then for any
ε ą 0, x ą 0, and α ă 0.5,

lim
nÑ8

sup
PPPε

ˇ

ˇ

ˇ

ˇ

EP
„

ψCα pβ̂n, A, d, θ
ub
P `

1
?
n
x,

1

n
Σ̂nq



´ ρ˚αpP, xq

ˇ

ˇ

ˇ

ˇ

“ 0,

where

ρ˚αpP, xq “ lim
nÑ8

sup
Cα,nPIαp∆, 1

n
ΣP q

Pβ̂n„NpβP , 1
n

ΣP q

ˆ

pθubP `
1
?
n
xq R Cα,n

˙

is the optimal local asymptotic power of a size-α test in the finite sample normal model. An
analogous result holds for the lower bound under the class of distributions where LICQ holds
in direction ´l.

Since the LF-hybrid test rejects whenever the conditional test with size α´κ
1´κ

rejects, it is
immediate that the local asymptotic power of the LF-hybrid test is at least as good as the
power of the optimal size-

`

α´κ
1´κ

˘

test.

Corollary 3.1. Under the conditions of Proposition 3.3,

lim inf
nÑ8

inf
PPPε

ˆ

EP
„

ψC-LF
κ,α pβ̂n, A, d, θ

ub
P `

1
?
n
x,

1

n
Σ̂nq



´ ρ˚α´κ
1´κ
pP, xq

˙

ě 0.

We emphasize that Proposition 3.3 and Corollary 3.1 are new, and exploit structure in our
context not contained in the more general setting considered in ARP.

3.5.2 Discussion and Examples

As discussed in Kaido et al. (2021), LICQ and related constraint qualifications have been
used frequently in the partial identification literature. Intuitively, LICQ ensures that the
bounds of the identified set are differentiable with respect to the means of the moments
pµ̃pθ̄qq, and thus avoids challenges related to estimation and inference on non-differentiable
parameters (Hirano and Porter, 2012). Uniform LICQ conditions have been invoked recently
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by Gafarov (2019) and Cho and Russell (2019), and a related Slater constraint qualification
is used in Kaido and Santos (2014). One important distinction between our results and
previous results using LICQ is that we do not require LICQ for our size control results
(Proposition 3.1). Thus, our tests control size even when LICQ fails (and so the bounds
may be non-differentiable), but Proposition 3.3 shows that this does not come at the cost of
power asymptotically when indeed LICQ holds.19

Figure 1: Diagram illustrating when LICQ (Assumption 2) will and will not hold in the case
where T̄ “ 2.

τ1

τ2

(a)

τ ˚post

´Ap1,postqτpost “ d1 ´ Ap1,¨qβ

´Ap2,postqτpost “ d2 ´ Ap2,¨qβ
l

τ1

τ2

(b)

´Ap1,postqτpost “ d1 ´ Ap1,¨qβ

´Ap2,postqτpost “ d2 ´ Ap2,¨qβ

´Ap3,postqτpost “ d3 ´ Ap3,¨qβ
l

τ1

τ2

(c)

τ ˚post

´Ap1,postqτpost “ d1 ´ Ap1,¨qβ

´Ap2,postqτpost “ d2 ´ Ap2,¨qβ

´Ap3,postqτpost “ d3 ´ Ap3,¨qβ

l

Note: In each panel, we assume that the rows associated with binding moments are ordered first in the
matrix A for ease of notation. The blue shading denotes the identified set for pτ1, τ2q and the dashed red
arrow points in the direction l “ p 1

2 ,
1
2 q
1. In panel (a), LICQ is satisfied since there is a unique τ˚post (colored

in red) at which two linearly independent moments are binding. In panel (b), even though τ˚post is not
unique, LICQ is satisfied as there is either one or two linearly independent binding moments at the values
of τ˚post colored in red. In panel (c), there are three binding moments at τ˚post (colored in red), and so LICQ
is violated.

Figure 1 provides geometric intuition for when LICQ will and will not hold in the case
where T̄ “ 2 and the target parameter is the average of the post-treatment effects, θ “
1
2
pτ1 ` τ2q. In panel (a), there is a unique τ˚post (colored in red) at which two linearly

independent moments bind, so LICQ is satisfied. LICQ is likewise satisfied in panel (b),
where the optimal τ˚post is not unique (a so-called “flat-face” problem). This is because at the
indicated values τ˚post (colored in red), there is either one or two linearly independent binding
moments. A failure of LICQ is shown in panel (c). In this example, there are three binding
moments at τ˚post (colored in red), so the binding constraints cannot be linearly independent
in R2. Such a situation may arise when there are both smoothness restrictions and sign or
shape restrictions that are simultaneously binding at the boundary of the identified set.

19We view this result as loosely parallel to results in the weak identification literature showing that certain
procedures control size under weak identification but are efficient under strong identification (e.g. Moreira,
2003).
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In the three period DiD model (where there are no nuisance parameters, since T̄ “ 1),
LICQ is satisfied when the bounds of the identified set are each determined by one moment.
This holds everywhere for ∆SDpMq whenM ą 0. It holds almost everywhere for ∆SDPBpMq

when M ą 0, although it fails when both the sign restrictions and smoothness restrictions
are simultaneously binding. (For LICQ to hold with non-binding moments slack by at least
ε, i.e. P P Pε, δP must not be local to a point at which LICQ fails.) When M “ 0, both the
upper and lower bounds for ∆SDpMq and ∆SDPBpMq are binding, so LICQ fails.

More generally, the result in Proposition 3.3 is under the asymptotic regime where the
sampling variation grows small relative to the length of the identified set, and thus the binding
and non-binding moments are “far” apart relative to sampling variation. Importantly, it can
be shown that the LICQ condition rules out settings where θ is point identified. Thus, the
asymptotics considered in Proposition 3.3 may not provide a good approximation to the
finite-sample performance of the conditional test in settings where θ is point-identified, or
when the length of the identified set is “small” relative to sampling variation.

We are not aware of results analogous to Proposition 3.3 for any test that controls size in
the finite-sample normal model. Kaido and Santos (2014) provide an efficiency result under
a related Slater constraint qualification condition, but their test does not control size when
the constraint qualification fails. It is worth highlighting that if LICQ holds for a particular
set of moments, then it also holds if one adds moments that are slack at the optimal τ˚post.
Proposition 3.3 thus requires that the asymptotic power of the test is not affected by the
inclusion of slack moments. The only other tests that we are aware of that control size in
the finite-sample normal model and have this form of insensitivity to slack moments are the
tests proposed by Cox and Shi (2022). An interesting open question is whether the tests
proposed by Cox and Shi (2022) also converge to the power envelope under LICQ.20

3.5.3 Extensions

Proposition 3.3 is stated for the case when ∆ is a single polyhedron. An immediate corollary,
however, is that when ∆ “

ŤK
k“1 ∆k, the conditional test based on the union of confidence

sets has optimal local asymptotic power when the ∆k that determines the identified set
bounds is unique and satisfies the conditions of Proposition 3.3. This implies, for exam-
ple, that when ∆ “ ∆RMpM̄q, the power of the conditional test converges to the power
envelope when there is a unique (non-zero) pre-treatment maximum violation, i.e. when
maxsă0 |δs`1 ´ δs| ą 0 and has a unique solution.21 Likewise, the conditional test has opti-

20Extending the results to the Cox and Shi tests is non-trivial given that they use a different test statistic
and form critical values in a different way.

21For this convergence to hold uniformly, the non-binding moments must be slack by ε, so we would need
that maxsă0 |δs`1 ´ δs| is at least ε greater than the second largest difference.
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mal local asymptotic power for ∆SDRMpM̄q when there is a unique maximum non-linearity
in the pre-treatment period. Intuitively, this is because the upper bound of the identified
set is determined by a single ∆k˚ satisfying LICQ, so the conditional test for this ∆k˚ has
optimal local asymptotic power, whereas our consistency results imply that the tests for
the remaining ∆k that do not determine the identified set bound reject with probability
approaching 1. See Corollary 4.1 in the working paper version of this paper for a formal
derivation (Rambachan and Roth, 2021).

Proposition 3.3 shows that under LICQ the local asymptotic power of the conditional
test converges to the power envelope for tests controlling size in the finite-sample normal
model. In the working paper version of this paper, we showed that the power envelope
from the finite-sample normal model corresponds with the power-envelope among tests that
control size asymptotically and have certain invariance properties using results in Müller
(2011) (Proposition E.4 in Rambachan and Roth (2021)).

4 Inference using Fixed Length Confidence Intervals

We next consider fixed length confidence intervals (FLCIs) based on affine estimators. While
the conditional and hybrid confidence sets offer attractive asymptotic power guarantees under
asymptotics in which sampling variation grows small relative to the length of the identified
set, FLCIs offer finite-sample power guarantees (in the normal model) for certain classes ∆ of
interest. In certain special cases, FLCIs may thus outperform the ARP tests when sampling
variation is large relative to the length of the identified set. For brevity of exposition, we
focus on the properties of FLCIs in the case where the finite-sample normal approximation (9)
holds exactly with Σn known; Armstrong and Kolesár (2020b) provide uniform asymptotic
results for FLCIs under conditions similar to those in Section 3.3.

4.1 Constructing FLCIs

Following Donoho (1994) and Armstrong and Kolesár (2018, 2020a), we consider fixed
length confidence intervals based on an affine estimator for θ, denoted by Cα,npa, v, χq :“
´

a` v1β̂n

¯

˘ χ, where a and χ are scalars and v P R¯
T`T̄ . We minimize the half-length of

the confidence interval, χ, subject to the constraint that Cα,npa, v, χq satisfies the coverage
requirement (10) in the finite-sample normal model.

Observe that if β̂n „ N pβ, Σnq , then a ` v1β̂n „ N pa` v1β, v1Σnvq, and hence |a `
v1β̂n´ θ| „ |N pb, v1Σnvq |, where b “ a` v1β´ θ is the affine estimator’s bias for θ. Observe
further that θ P Cα,npa, v, χq if and only if |a ` v1β̂n ´ θ| ď χ. For fixed values a and v, the
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smallest value of χ that satisfies (10) is therefore the 1 ´ α quantile of the |N
`

b̄, v1Σnv
˘

|

distribution, where b̄ is the affine estimator’s worst-case bias

b̄pa, vq :“ sup
δP∆,τpostPRT̄

|a` v1 pδ ` Lpostτpostq ´ l
1τpost| . (17)

Let cvαptq denote the 1´α quantile of the folded normal distribution |N pt, 1q |.22 For fixed
a and v, the smallest value of χ satisfying the coverage requirement (10) is thus

χnpa, v;αq “ σv,n ¨ cvαpb̄pa, vq{σv,nq, (18)

where σv,n :“
?
v1Σnv. The optimal (i.e., minimum-length) FLCI is constructed by choosing

the values of a and v to minimize (18). When ∆ is convex, this minimization can be solved
as a nested optimization problem, where both the inner and outer minimizations are convex
(Low, 1995; Armstrong and Kolesár, 2018, 2020a). We denote the 1´α level, optimal FLCI
by CFLCIα,n pβ̂n,Σnq :“

´

an ` v
1
nβ̂n

¯

˘ χn, where χn :“ infa,v χnpa, v;αq and an, vn are the
optimal values in the minimization.

Example: ∆SDpMq. Suppose θ “ τ1. For ∆SDpMq, the affine estimator used by the
optimal FLCI takes the form a`v1β̂n “ β̂n,1´

ř0
s“´

¯
T`1ws

´

β̂n,s ´ β̂n,s´1

¯

, where the weights
ws sum to one (but may be negative). This estimator adjusts the event-study coefficient for
t “ 1 by an estimate of the differential trend between t “ 0 and t “ 1 formed by taking
a weighted average of the differential trends in periods prior to treatment. The worst-case
bias will be smaller if more weight is placed on pre-treatment periods closer to the treatment
date, but it may reduce variance to place more weight on earlier pre-periods. The weights
ws are optimally chosen to balance this tradeoff. N

4.2 Finite-sample near optimality

In particular cases of interest, such as when ∆ “ ∆SDpMq, the optimal FLCIs introduced
above have near-optimal expected length in the finite-sample normal model. The following
result, which is an immediate consequence of results in Armstrong and Kolesár (2018, 2020a),
bounds the ratio of the expected length of the shortest possible confidence interval that
controls size relative to the length of the optimal FLCI.

Assumption 8. Assume i) ∆ is convex and centrosymmetric (i.e. δ̃ P ∆ implies ´δ̃ P ∆),
and ii) δ P ∆ is such that pδ̃ ´ δq P ∆ for all δ̃ P ∆.

22If t “ 8, we define cvα “ 8.
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Proposition 4.1. Suppose δ and ∆ satisfy Assumption 8. Let Iαp∆,Σnq denote the class
of confidence sets that satisfy the coverage criterion (10) at the 1´ α level. Then, for any τ
with τpre “ 0 and Σn positive definite,

infCα,nPIαp∆,Σnq Eβ̂n„N pδ`τ,Σnq rλpCα,nqs
2χn

ě
z1´αp1´ αq ´ z̃αΦpz̃αq ` φpz1´αq ´ φpz̃αq

z1´α{2

,

where λp¨q denotes the length (Lebesgue measure) of a set and z̃α “ z1´α ´ z1´α{2.

Part i) of Assumption 8 is satisfied for ∆SDpMq but not for our other ongoing examples.
For example, ∆SDPBpMq is convex but not centrosymmetric, and ∆RMpM̄q is neither convex
nor centrosymmetric. Part ii) of Assumption 8 is satisfied whenever parallel trends holds in
both the pre-treatment and post-treatment periods pδ “ 0q and whenever δ is a linear trend
for the case of ∆SDpMq.

FLCIs thus offer attractive guarantees for the case of ∆SDpMq. When α “ 0.05, the
lower bound in Proposition 4.1 evaluates to 0.72, meaning that the expected length of the
shortest possible confidence set that satisfies the coverage requirement (10) is at most 28%

shorter than the length of the optimal FLCI when the conditions of the proposition hold.

4.3 (In)Consistency of FLCIs

As discussed above, these finite-sample guarantees do not apply for several types of re-
strictions ∆ of importance, including those that construct bounds using the maximum pre-
treatment violation or incorporate sign and shape restrictions. We now show that the FLCIs
can perform poorly under such restrictions. We first provide two illustrative examples, and
then state a formal inconsistency result.

Example: ∆SDPBpMq and ∆SDIpMq. Suppose θ “ τ1. It can be shown that the worst-
case bias of an affine estimator over ∆SDPBpMq or ∆SDIpMq is the same as the worst-case
bias for that estimator over ∆SDpMq.23 Since the construction of the optimal FLCI depends
only on the worst-case bias and variance of the affine estimator, it follows that the optimal
FLCI constructed using ∆SDPBpMq or ∆SDIpMq is the same as the one constructed using
∆SDpMq. Therefore, the optimal FLCI does not adapt to additional sign or monotonicity
restrictions. N

23Suppose the vector δ̄ maximizes the bias for an affine estimator pa, vq over ∆SDpMq. The vector that
adds a constant slope to δ̄, say δ̃c “ δ̄ ` c ¨ p´

¯
T, ..., T̄ q1, also lies in ∆SDpMq, and for c sufficiently large, δ̃c

will lie in ∆SDPBpMq. Moreover, the worse-case bias will be the same for δ and δ̃c, since if pa, vq has finite
worst-case bias it must subtract out a weighted average of the pre-treatment slopes.
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Example: ∆RMpM̄q. Suppose θ “ τ1. If ∆ “ ∆RMpM̄q and M̄ ą 0, then all affine
estimators for τ1 have infinite worst-case bias, since δ P ∆RMpM̄q can have |δ1| arbitrarily
large if |δ´1| is also sufficiently large. Thus, the only valid FLCI is the entire real line. N

We next provide a formal result on the (in)consistency of the FLCIs. Specifically, we
will show that even as the sampling variation Σn converges to 0, the optimal FLCI will
include fixed points outside of the identified set with positive probability unless certain special
conditions are met.24 Recall from Lemma 2.1 that the identified set Spβ,∆q is an interval
when ∆ is convex, with length equal to θubpβ,∆q´ θlbpβ,∆q “ bmaxpβpre,∆q´ b

minpβpre,∆q.
Since the length of the identified set only depends on βpre and ∆, denote it by LIDpβpre,∆q.
Our next result shows that CFLCIα,n pβ̂n,Σnq is consistent if and only if LIDpβpre,∆q is its
maximum possible value, provided that the identified set is not the entire real line (in which
case any procedure is trivially consistent).

Assumption 9 (Identified set maximal length and finite). Suppose δ P ∆ is such that
LIDpδpre,∆q “ supδ̃preP∆pre

LIDpδ̃pre,∆q ă 8, where ∆pre “ tδpre P R¯
T : Dδpost s.t. pδ1pre, δ1postq1 P

∆u is the set of possible values for δpre.

Proposition 4.2. Suppose ∆ is convex and α ă 0.5. Fix δ P ∆ and τ with τpre “ 0, and
suppose Spδ ` τ,∆q ‰ R. Then pδ,∆q satisfy Assumption 9 if and only if CFLCIα,n pβ̂n,Σnq is
consistent, meaning that for Σn “ Σ˚{n,

lim
nÑ8

Pβ̂n„N pδ`τ,Σnq
´

θout P CFLCIα,n pβ̂n,Σnq

¯

“ 0 for all θout R Spδ ` τ,∆q.

Thus, if Assumption 9 fails, then CFLCIα,n pβ̂n,Σnq is inconsistent in the strong sense that it
includes fixed points outside of the identified set with non-vanishing probability. It follows
that there will be some δ P ∆ such that the FLCI is inconsistent under δ unless the identified
set is always the same length. Proposition 4.2 is new, and may be relevant for other settings
in which FLCIs are used.

The intuition for the possible inconsistency of FLCIs is as follows: to ensure that an FLCI
satisfies the coverage requirement (10), its length must be at least supδ̃preP∆pre

LIDpδ̃pre,∆q.
However, this implies that if in fact LIDpδpre,∆q ă supδ̃preP∆pre

LIDpδ̃pre,∆q, then the FLCI
is strictly longer than the length of the identified set, regardless of the value of Σn, and thus
some points outside of the identified set must be covered with non-vanishing probability.
This reflects the fact that FLCIs are by construction fixed length, and thus their length does
not adapt to information in the data about the length of the identified set. By contrast, the

24For ease of exposition, we present a result using “small-Σ” asymptotics in the normal model, as in e.g.,
Kadane (1971) and Moreira and Ridder (2019).
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length of the conditional/hybrid confidence sets can depend on β̂pre and thus “adapts” to the
length of the identified set.

In the three-period difference-in-differences example, Assumption 9 holds everywhere for
∆SDpMq (since the identified set is always the same length, 2M), for values of δ where
the sign restrictions do not bind for ∆SDPBpMq, and nowhere for the polyhedra that form
∆RMpM̄q. The restrictiveness of Assumption 9 thus depends greatly on ∆.

The results in this section establish that when certain conditions on ∆ are satisfied,
optimal FLCIs are consistent and have desirable finite-sample guarantees in terms of expected
length. FLCIs are thus attractive for our baseline smoothness class ∆SDpMq, since they are
guaranteed to be consistent and offer attractive finite-sample guarantees. Our inconsistency
result shows, however, that FLCIs may perform poorly for other choices of ∆ that may be of
interest in empirical applications, such as those that construct bounds using a pre-treatment
maximum or incorporate sign and monotonicity restrictions.

5 Simulation study

In this section, we conduct a simulation study to investigate the performance of the discussed
confidence sets across a range of relevant data-generating processes. We find good size control
for all of the procedures, and therefore focus in the main text on a comparison of power to
provide concrete recommendations on the best approach in practice. In the supplementary
material, we present results on size control and other additional simulation results.

5.1 Simulation Design

Our simulations are calibrated using the estimated covariance matrix from the 12 recently-
published papers surveyed in Roth (Forthcoming). For any given paper in the survey, we
denote by Σ̂ the estimated variance-covariance matrix from the event-study in the paper,
calculated using the clustering scheme specified by the authors. For a chosen mean vector β,
we simulate event-study coefficients β̂s from a normal model, β̂s „ N

´

β, Σ̂
¯

.25 In simulation
s, we construct nominal 95% confidence sets for the parameter of interest θ using the pair
pβ̂s, Σ̂q for each proposed procedure. The parameter of interest is the causal effect in the
first post-treatment period (θ “ τ1); in the supplementary material, we present simulation
results in which the parameter of interest is the average causal effect in the post-treatment
periods (θ “ τ̄post), with qualitatively similar results.

25We focus on the normal simulations in the main text since it allows for a tractable computation of the
optimal excess length of procedures that control size. In the supplementary material, we show that our
procedures perform similarly in simulations based on the empirical distribution in the original paper.
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For a given choice of ∆, we compute the identified set Spβ,∆q and calculate the expected
excess length for each of the proposed confidence sets. We benchmark the expected excess
length of our proposed confidence sets relative to an efficiency bound for confidence sets that
satisfy the uniform coverage requirement.26 We report the efficiency ratio of each procedure,
which is defined as the ratio of the optimal benchmark relative to the average excess length
for the procedure. All results are calculated over 1000 simulations per paper.

Parallel Trends Pulse Pre-Trend
∆SDpMq ∆SDPBpMq ∆SDRMpM̄q ∆RMpM̄q

Conditional and Hybrid
Consistent X X X X
Asymptotically (near-)optimal X X X ˆ

FLCI
Consistent X ˆ ˆ ˆ

Finite-sample near-optimal X ˆ ˆ ˆ

Table 1: Summary of expected properties for each simulation design

We consider four choices of ∆ to highlight the performance of our proposed confidence
sets across a range of conditions: ∆SDpMq, ∆SDPBpMq, ∆RMpM̄q, and ∆SDRMpM̄q. We
consider simulations under the assumption of zero treatment effects, so that τ “ 0 and thus
β “ δ. We consider two forms for δ. First, we consider the baseline case of parallel trends
(δ “ 0). Second, we consider a “pulse” pre-trend in which δ´1 is non-zero and the remaining
elements of δ are zero. Such a pre-trend might arise in practice if there are confounding policy
changes or other events close to the time of treatment. These different choices of δ allow us
to highlight the relative strengths of the proposed inference procedures. For example, FLCIs
have near-optimal expected length when δ “ 0 and ∆ “ ∆SDpMq, whereas the conditional
test has optimal local asymptotic power under the pulse design when ∆ “ ∆SDPBpMq. Table
1 summarizes which of our theoretical results hold for each of the simulation designs when
M and M̄ are non-zero.

In practice, we find that for ∆SDpMq and ∆SDPBpMq, the results depend on M but are
qualitatively similar across values of δ. By contrast, for ∆SDRMpM̄q and ∆RMpM̄q, the choice
of δ is more important than the choice of M̄ . Therefore, to highlight the most important

26For choices of ∆ that are convex (e.g., ∆SDpMq and ∆SDPBpMq), we benchmark the expected excess
length of our proposed confidence sets against a sharp optimal bound over confidence sets that satisfy the
finite-sample coverage requirement (10). This optimal bound is provided in the supplementary materials,
and follows as a corollary from results in Armstrong and Kolesár (2018) on the optimal expected length of
a confidence set satisfying the uniform coverage requirement (10). For choices of ∆ that can be written as
the union of convex sets (e.g., ∆RM pM̄q and ∆SDRM pM̄q), we compare the expected excess length of our
proposed confidence sets against the maximal optimal bound over each set in the union, which is a potentially
non-sharp bound for any confidence set with correct coverage.
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dimensions for each of the simulation designs, in the main text of the paper we report results
for ∆SDpMq and ∆SDPBpMq under different values ofM and δ “ 0 (parallel trends), whereas
for ∆RMpM̄q and ∆SDRMpM̄q we vary the magnitude of the pre-treatment pulse δ´1, holding
M̄ “ 1 constant. In the supplementary materials, we report results for additional choices of
these parameters.

We report results for three methods for constructing confidence sets: FLCIs, conditional
confidence sets, and conditional-least favorable hybrid confidence sets.27 For ∆RMpM̄q and
∆SDRMpM̄q, we omit results for the FLCI since the FLCIs have infinite length.

5.2 Simulation Results

To compare results easily across the 12 papers in the simulation study, we normalize the
units of δ´1 and M by the standard deviation of β̂1 (denoted σ1). Large normalized values
of M or δ´1 correspond with the case where the identified set is large relative to sampling
variation, mimicking our asymptotic power results in which sampling variation grows small
relative to the identified set. In the graphs below, we report the median value of excess
length efficiency across the papers in the survey. The normalization described above implies
that the units of the x-axis correspond with the worst-case bias of the naive estimator β̂1

divided by its standard error.28

Results for ∆SDpMq: The left panel of Figure 2 plots the efficiency ratio for each procedure
as a function ofM{σ1 when ∆ “ ∆SDpMq. All procedures perform well asM{σ1 grows large
with efficiency ratios approaching 1, illustrating our asymptotic (near-)optimality results for
this design. However, the FLCIs perform best for smaller values of M{σ1, including the
point-identified case where M “ 0, illustrating the finite-sample near-optimality results for
the FLCIs when Assumption 8 holds. Although the conditional and hybrid confidence sets
have efficiency approaching the optimal bound for M{σ1 large, their efficiency is only about
50% when M{σ1 “ 0, in which case θ is point identified and thus LICQ does not hold. The
conditional and hybrid confidence sets perform similarly.

Results for ∆SDPBpMq: The right panel of Figure 2 plots the efficiency ratio for each
procedure as a function of M{σ1 when ∆ “ ∆SDPBpMq. The efficiency ratios for the condi-
tional and hybrid confidence sets are again (near-)optimal as M{σ1 grows large, highlighting

27For the conditional-least favorable hybrid confidence sets, we use a first-stage least-favorable test of size
κ “ α{10, following ARP and Romano, Shaikh and Wolf (2014).

28For β̂1 normally distributed, the worst-case coverage of a conventional 95% confidence interval as a
function of the normalized worst-case bias b is Φp1.96` bq ´ Φp´1.96` bq, which is 0.95 for b “ 0, 0.83 for
b “ 1, 0.48 for b “ 2, etc.
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Figure 2: Simulation results for ∆SDpMq and ∆SDPBpMq: Median efficiency ratios for pro-
posed procedures.

Note: Median efficiency ratios for our proposed confidence sets over ∆SDpMq and ∆SDPBpMq under the
assumption of parallel trends and zero treatment effects (i.e., β “ 0). The efficiency ratio for a procedure
is defined as the efficiency bound divided by the procedure’s expected excess length. The results for the
FLCI are plotted in purple, conditional-LF (“C-LF Hybrid”) hybrid in blue, and conditional confidence set
in green. Results are averaged over 1000 simulations for each of the 12 papers surveyed, and the median
across papers is reported here.

Figure 3: Simulation results for ∆SDRMpM̄q and ∆RMpM̄q: Median efficiency ratios for
proposed procedures.

Note: Median efficiency ratios for our proposed confidence sets over ∆SDRM pM̄q and ∆RM pM̄q with M̄ “ 1
under the assumption of zero treatment effects and a “pulse” pre-trend (i.e., β´1 “ δ´1 and βt “ 0 for all
t ‰ ´1). The efficiency ratio for a procedure is defined as the efficiency bound divided by the procedure’s
expected excess length. The results for the conditional-least favorable (“C-LF”) hybrid are plotted in blue,
and conditional confidence set in green. Results are averaged over 1000 simulations for each of the 12 papers
surveyed, and the median across papers is reported here.

our asymptotic (near-)optimality results for these procedures in this simulation design. By
contrast, the efficiency ratios for the FLCIs steadily decrease as M{σ1 increases, reflecting
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that the FLCIs are not consistent in this simulation design whenM ą 0. The conditional-LF
hybrid confidence sets slightly improve efficiency relative to the conditional when M{σ1 is
small and retain near-optimal performance as M{σ1 grows large.

Results for ∆SDRMpM̄q: The left panel of Figure 3 plots the efficiency ratios for the
conditional and conditional-least favorable hybrid confidence sets as a function of δ´1{σ1

when ∆ “ ∆SDRMpM̄q. We omit results for the optimal FLCI since the optimal FLCI has
infinite length for this design. Both procedures perform well as δ´1{σ1 grows large with
efficiency ratios approaching 1, illustrating our asymptotic (near-) optimality result for this
design. Both procedures also have similar power curves, with slightly higher power for the
conditional.

Results for ∆RMpM̄q: The right panel of Figure 3 plots the efficiency ratio for the con-
ditional and conditional-least favorable hybrid confidence sets as a function of δ´1{σ1 when
∆ “ ∆RMpM̄q. We again omit results for the optimal FLCI since the optimal FLCI has
infinite length for this design. The conditions for our asymptotic (near-) optimality result
for unions of convex sets do not hold in this simulation design (as the maximum pre-period
violation is not unique). Nonetheless, we find that the conditional-least favorable hybrid con-
fidence set and the conditional confidence set perform quite well for large values of δ´1{σ1,
with efficiency ratios approaching about 83%. This is encouraging as it shows that these
procedures may perform well even in cases where LICQ fails. Once again, we also find that
the conditional and conditional-least favorable hybrid have similar power.

Takeaways from Simulations: Two clear patterns emerge from our simulations. First,
the conditional and hybrid confidence sets perform well across a wide range of specifications,
with particularly good power when the length of the identified set is large relative to sampling
variation. Second, the FLCIs have the best performance for ∆SDpMq, particularly when M
is small, which aligns with the finite-sample near-optimality results in Section 4. However,
FLCIs can perform quite poorly for other classes of ∆.

Overall, we therefore recommend to use the conditional-LF hybrid confidence sets for
generic forms of ∆, and optimal FLCIs for the special case of ∆SDpMq (or other special cases
where the consistency/finite-sample near-optimality of FLCIs is guaranteed). Although the
conditional and hybrid approaches perform similarly in our simulations, we recommend the
hybrid approach in general based on the guidance provided in ARP. We implement these
recommendations in our applications in the next section.
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6 Practical Guidance and Empirical Illustrations

6.1 Practical Guidance

We recommend that researchers use our methods to construct robust confidence intervals
under restrictions on the possible violations of parallel trends ∆ that are motivated by domain
knowledge in their empirical setting. We also suggest that researchers report sensitivity
analyses to illustrate the sensitivity of their causal conclusions to alternative assumptions
on the possible violations of parallel trends.

Choice of ∆. The choice of ∆ should be motivated by economic knowledge about the types
of possible confounding factors that would produce non-parallel trends. We now provide some
guidance on how the choice of ∆ can be motivated by domain knowledge, highlighting some
cases where our leading examples, ∆RMpM̄q and ∆SDpMq, would be sensible choices.

In some empirical settings, researchers may be concerned about differential economic
shocks to the treated and control groups that generate violations of parallel trends. If the
researcher believes that the magnitude of these differential shocks in the post-treatment
period is not too different from the magnitude in the pre-treatment period, then it may
be reasonable to assume δ P ∆RMpM̄q, which explicitly bounds the relative magnitudes of
violations of parallel trends in the post-treatment based on observed violations in the pre-
treatment period. In other settings, researchers may be worried about violations of parallel
trends that arise due to differences in smoothly evolving secular trends that differentially
affect treated and comparison groups. In this case, it may be reasonable to assume δ P
∆SDpMq, which explicitly bounds the extent to which the slope of the difference in trends
can vary across consecutive periods. Economic knowledge may imply additional restrictions
as well. For example, if the researcher knows of a confounding policy change that would have
a positive effect on the outcome, then it is reasonable to further assume that post-treatment
difference in trends must be positive (i.e., δt ě 0 for t ą 0).

In our empirical applications below, we illustrate how domain knowledge about the types
of possible violations of parallel trends can inform the choice of ∆. We encourage applied
researchers to use such domain knowledge to inform the restrictions they impose on the
possible choices of parallel trends in their context.

Choice of inference procedure. Based on our theoretical results and Monte Carlo sim-
ulations, we recommend the ARP hybrid confidence sets for generic, polyhedral forms of
∆. For the special case of ∆SDpMq — or other choices of ∆ for which the consistency
and finite-sample-near-optimality of FLCIs are guaranteed — we recommend FLCIs. Our
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recommended choice of inference procedure is implemented in the R package, HonestDiD,
that accompanies the paper.29 Furthermore, these confidence sets are quick to compute.
Each sensitivity analysis plot in the empirical applications below took less than 9 minutes
to compute on a 2012 Macbook Pro.

Sensitivity analyses. Once the researcher has chosen a baseline class of restrictions on
the possible violations of trends (e.g. relative magnitudes bounds ∆RMpM̄q or smoothness
bounds ∆SDpMq), we recommend conducting sensitivity analysis over the associated param-
eter (M̄ ě 0 orM ě 0, respectively) that governs how different the post-treatment violations
of parallel trends can be from the pre-trends. It is natural to report both the sensitivity of
the researcher’s causal conclusion to the choice of this parameter and the “breakdown” pa-
rameter value at which particular hypotheses of interest can no longer be rejected; similar
“breakdown” concepts appear in the partial identification settings of Horowitz and Manski
(1995); Kline and Santos (2013); Manski and Pepper (2018); Masten and Poirier (2020).30

We illustrate how one can interpret the magnitudes of the breakdown points in our two
empirical illustrations below.

6.2 Estimating the incidence of a value-added tax cut

Benzarti and Carloni (2019, henceforth, BC) study the incidence of a decrease in the value-
added tax (VAT) on restaurants in France. France reduced its VAT on sit-down restaurants
from 19.6 to 5.5 percent in July of 2009. BC analyze the impact of this change using
a dynamic difference-in-differences design that compares restaurants to a control group of
other market services firms that were not affected by the VAT change, estimating

Yit “
ÿ

s‰2008

βs ˆ 1rt “ ss ˆDi ` φi ` λt ` εit, (19)

where Yit is the log of (before-tax) profits for firm i in year t; Di is an indicator for whether
firm i is a restaurant; φi and λt are firm and year fixed effects; and standard errors are

29The latest version of the R package can be downloaded by visiting http://github.com/
asheshrambachan/HonestDiD.

30Our main focus in this paper is on constructing robust confidence sets given a particular restriction
∆pMq, rather than inference on the identification breakdown point or breakdown frontier as in e.g. Masten
and Poirier (2020). Note, however, that if we defineM˚ “ minM s.t. 0 P Spβ,∆pMqq to be the identification
breakdown point for a null effect, and M̂˚ “ minM s.t. 0 P Cpβ̂n, Σ̂n; ∆pMqq to be the sample breakdown
point, then P pM̂˚ ě M˚q ě P p0 P Cpβ̂n, Σ̂n; ∆pM˚qq. It follows that p´8, M̂˚s is a valid p1 ´ αq-level
confidence interval for M˚ provided that our conditions for size control are satisfied for ∆pM˚q. We suspect
that our results could be extended to allow for uniform coverage of the breakdown frontier under additional
regularity conditions, but leave this to future work.
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clustered at the regional level. BC’s main finding is that the VAT reduction had a large,
positive effect on restaurant profits. Figure 4 shows the estimated event-study coefficients
tβ̂su from specification (19). We can formally reject the hypothesis that βpre “ 0 (p ă 0.01),
as there appears to have been a difference in trends between 2006 and 2007. Nevertheless,
the changes in profits after the policy change appear to be larger in magnitude than any of
the pre-trends.

Figure 4: Event-study coefficients tβsu for log profits, estimated using the event-study spec-
ification in (19).

A key concern in this empirical setting is that there may be unobserved, industry-specific
or macroeconomic shocks that would have affected restaurants differently from other market-
services firms even in the absence of a change in VAT. It seems reasonable to impose that
the industry-specific shocks to restaurants in the post-treatment period are not too much
larger than those in the pre-treatment period — whereas imposing that industry-specific
shocks follow a smooth trend seems unreasonable — and so we base our analysis on bounds
on relative magnitudes ∆RMpM̄q.

The left panel of Figure 5 shows robust confidence sets for the treatment effect in 2009 for
∆RMpM̄q using different values of M̄ . The figure shows that if we impose M̄ “ 1, meaning
that we restrict the post-treatment violations of parallel trends to be no larger than the
maximal pre-treatment violation of parallel trends, then we obtain a robust confidence set of
r0.07, 0.31s for the causal effect on restaurant profits in 2009. This is wider than the original
OLS confidence interval which is only valid if parallel trends holds exactly, but nevertheless
rules out a null effect on restaurant profits in 2009. Looking further to the right, we see
that the “breakdown value” for a null effect is around M̄ “ 2. Thus, our conclusion of a
significant effect on restaurant profits depends on whether we are willing to restrict that
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the post-treatment violations of parallel trends can be no more than twice as large as the
maximal pre-treatment violation. Given that the first year after the treatment coincided with
a large recession in France (2009), it may be plausible that the differential factors affecting
restaurants were larger in that year than in the pre-treatment period. Our approach helps
formalize how much larger they would need to be to reject the conclusion of a null effect (or
other hypotheses).

Figure 5: Sensitivity analysis for Benzarti and Carloni (2019)

The right panel of Figure 5 shows analogous results when the estimand is the average
causal effect on restaurant profits across all four post-treatment periods pτ̄q. When M̄ “ 1,
our robust confidence set now includes zero, and is about twice as large as for the first-period
effect (notice the difference in scale across the panels). The intuition for why the confidence
sets are larger when looking at τ̄ than τ2009 is that ∆RMpM̄q bounds the violation of parallel
trends across consecutive periods by M̄ times the max in the pre-treatment period. Thus,
the identified set will be larger for later periods, since the treatment and control groups have
more time to diverge (e.g., the identified set for the second period will be twice as larger
as for the first period). If we are willing to bound the magnitude of economic shocks by
the max in the pre-treatment period, we will thus typically obtain wider confidence sets for
parameters involving later periods.

6.3 The effect of duty-to-bargain laws on long-run student out-

comes

Lovenheim and Willen (2019, henceforth LW) study the impact of state-level public sector
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duty-to-bargain (DTB) laws, which mandated that school districts bargain in good faith
with teachers’ unions. LW examine the impacts of these laws on the adult labor market
outcomes of people who were students around the time that these laws were passed, compar-
ing individuals across different states and different birth cohorts to exploit the differential
timing of the passage of DTB laws across states. The authors estimate the following regres-
sion specification separately for men and women, using data from the American Community
Survey (ACS),

Ysct “
21
ÿ

r“´11

Dscrβr `X
1
sctγ ` λct ` φs ` εsct. (20)

Ysct is an average outcome for the cohort of students born in state s in cohort c in ACS cal-
endar year t. Dscr is an indicator for whether state s passed a DTB law r years before cohort
c turned age 18.31 The event-study coefficients tβ̂ru estimate the dynamic treatment effects
(or placebo effects) r years after DTB passage.32 The remaining terms include time-varying
controls, birth-cohort-by-ACS-year fixed effects, and state fixed effects. We normalize the
event-study coefficient β´2 to 0.33 We focus on the results where the outcome is employment.

Figure 6 plots the estimated event-study coefficients tβ̂ru from specification (20). In
the event-study for men (left panel), the pre-period coefficients are relatively close to zero,
whereas the longer-run post-period coefficients are negative. By contrast, the results for
women (right panel) suggest a downward-sloping pre-existing trend.

LW write that, the “primary concern in our identification strategy is the existence of
secular trends that differ systematically with treatment” (p. 318), such as confounding
changes in labor supply or educational attainment. Given that the concern is long-run
trends that are likely to evolve smoothly over time, smoothness restrictions of the form ∆SD

seem natural in this context. Indeed, in some of their robustness checks, LW estimate models
with group-specific linear trends, which roughly corresponds with the case ∆SDp0q.34 It thus

31Dsc,´11 is set to 1 if state s passed a law 11 years or more after cohort c turned 18. Likewise, Dsc,21 is
set to 1 if state s passed a law 21 or more years before cohort c turned 18.

32Treatment timing in LW is staggered, and therefore the results in Sun and Abraham (2020) imply that
βr can be interpreted as a sensible weighted average of causal effects under parallel trends only if treatment
effects are homogeneous across adoption cohorts. For simplicity, we focus on the robustness of the results
to violations of parallel trends using the original specification in LW, which is valid under the assumption of
homogeneous treatment effects. As discussed in Section 2.1, our sensitivity analysis can also be applied to
estimators that are robust to treatment effect heterogeneity.

33LW normalize event time -1 to 0, but discuss how cohorts at event time -1 may have been partially
treated since LW impute the year that a student starts school with error. Since our robust confidence sets
assume that there is no causal effect in the pre-period (τpre “ 0), we instead treat event-time -2 as the
reference period in our analysis.

34The two are not exactly equivalent, however, because LW include parametric trends into what they call a
“parametric event-study” model (see their specification (2)), which imposes that treatment effects are linear
in time since treatment, rather than the flexible dynamic event-study specification (20).

40



seems natural to consider relaxations of the form ∆SDpMq, which allows for deviations from
non-linearity of no more than M between consecutive periods.

Figure 6: Event-study coefficient tβru for employment, estimated using the event-study
specification in (20).

Figure 7: Sensitivity analysis for θ “ τ15 using ∆ “ ∆SDpMq

Figure 7 reports results for the treatment effect on employment for the cohort 15 years
after the passage of a DTB law (as in Table 2 of LW), constructing robust confidence sets
about how non-linear the difference in trends can be. In blue, we plot the original OLS
confidence intervals for β̂15 from specification (20). In red, we plot FLCIs when ∆ “ ∆SDpMq

for different values of M ; recall that M “ 0 corresponds with allowing only for linear
violations of parallel trends, and larger values ofM allow for larger deviations from linearity.
In the analysis for men (left panel), the FLCIs are similar to those from OLS when allowing
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for violations of parallel trends that are approximately linear (M « 0), but become wider
as we allow for more non-linearity; the breakdown value for a significant effect is M « 0.01.
For women (right panel), the original OLS estimates are negative and the confidence interval
rules out 0. When we allow for linear violations of parallel trends pM “ 0q, however, the
picture changes substantially owing to the pre-existing downward trend that is visible in
Figure 6. Indeed, for M ă 0.01 the robust confidence set contains only positive values.
Intuitively, this is because the point estimate for t “ 15 lies above a linear extrapolation of
the negative pre-trend. Thus, if we were to impose the same smoothness restrictions for men
as for women, we would either have to reconcile significant effects of opposite signs by gender
(if M ă 0.01) or we would not be able to rule out null effects for both genders pM ě 0.01q.

How can we interpret the magnitudes of M in this example? We consider a calibration
exercise based on the magnitudes of possible possible confounds: if violations of parallel
trends were driven by confounding changes in education quality, what would a given value
of M imply about the evolution of those confounds? Chetty, Friedman and Rockoff (2014)
estimate that a 1 standard deviation increase in teacher value-added (VA) corresponds with
a 0.4 percentage point increase in adult employment. Hence, a value of M “ 0.01 would
correspond with allowing the slope of the differential trend to change by the equivalent of
a one-fourtieth of a standard deviation of teacher VA across consecutive periods. Since the
robust confidence sets for both men and women begin to include zero around this value of
M , the strength with which we can rule out a null effect depends on our assessment of the
economic plausibility of such non-linearities.

7 Conclusion

This paper considers the problem of conducting inference in difference-in-differences and
related designs that is robust to violations of the parallel trends assumption. We introduce a
variety of restrictions on the class of possible differences in trends that formalize commonly
made arguments in empirical work, generalizing the framework for partial identification in
Manski and Pepper (2018). We provide inference procedures that are uniformly valid so
long as the difference in trends satisfies these restrictions, and derive novel results on the
power of these procedures. We recommend that applied researchers report robust confidence
sets under economically-motivated restrictions on parallel trends. We also recommend that
researchers conduct formal sensitivity analyses, in which they report confidence sets for the
causal effect of interest under a variety of possible restrictions on the underlying trends.
Such sensitivity analyses make transparent what assumptions are needed in order to draw
particular conclusions.
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This online appendix contains proofs and additional results for the paper “A More Cred-
ible Approach to Parallel Trends” by Ashesh Rambachan and Jonathan Roth. Section A
contains proofs and auxilliary lemmas for results stated in the main text. Section B contains
additional details and results from our simulations.

A Proofs of Results in Main Text

Proof of Lemma 2.2

Proof. By equation (7), we can write the coverage requirement as

inf
δP∆,τ

inf
k

inf
θPSpδ`τ,∆kq

Pβ̂n„N pδ`τ,Σnq

˜

θ P
ď

k1

Cn,k1pβ̂n,Σnq

¸

ě 1´ α.

The left-hand side is bounded below by

inf
δP∆,τ

inf
k

inf
θPSpδ`τ,∆kq

Pβ̂n„N pδ`τ,Σnq
´

θ P Cn,kpβ̂n,Σnq

¯

,

which is at least 1´ α since Cn,kpβ̂n,Σnq satisfies (10) for ∆ “ ∆k for all k.

Proof of Proposition 3.1

Proof. We verify that the conditions of the proposition are sufficient for the conditions for
size control for the conditional and hybrid tests given in Proposition 2 of ARP. Note that in
our setting, the non-stochastic variable X̃ plays the role of the instruments Z in ARP, so all
statements in ARP conditional on Z can be interpreted as unconditional in our context.

First, suppose that Assumption 5(A) holds. Then we can write Ỹnpθq “ Aβ̂n ´ d ´

Ãp¨,1qθ “ TUnpθq ´ ζpθq, where Unpθq “ Qβ̂n and ζpθq “ d ` Ãp¨,1qθ is non-stochastic,
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which is the structure required by the first part of Assumption 1 of ARP.35 Note that
ΩP :“ V arP pUnpθqq “ QΣPQ

1. Since Q is full-rank by assumption and ΣP has eigenvalues
bounded away from zero by Assumption 3, so too does ΩP “ QΣPQ

1, as required by the
latter part of Assumption 1 in ARP. Next, note that our estimate of the variance of Ỹnpθq,
AΣ̂nA

1, can be expressed as T Ω̂nT , for Ω̂n “ QΣ̂nQ
1. It is immediate from Assumption 4

that Ω̂n is uniformly consistent for ΩP , as required in Assumption 2 in ARP. Next, note that
if f P BL1, then gpxq “ ||G||´1

op fpGxq is also in BL1, where || ¨ ||op is the operator norm. This
implies that

sup
fPBL1

ˇ

ˇ

ˇ
EP

”

fp
?
nQpβ̂ ´ βP q

ı

´ E rfpQξP qs
ˇ

ˇ

ˇ
ď ||Q||op sup

fPBL1

ˇ

ˇ

ˇ
EP

”

fp
?
npβ̂ ´ βP q

ı

´ E rfpξP qs
ˇ

ˇ

ˇ
.

Since Unpθq “ Qβ̂n, Assumption 2 together with the previous argument implies that

lim
nÑ8

sup
PPP

sup
fPBL1

ˇ

ˇ

ˇ
EP

“

fp
?
npUnpθq ´QβP q

‰

´ E
”

fpξ̃P q
ı
ˇ

ˇ

ˇ
“ 0,

where ξ̃P „ N p0, ΩP q. This verifies Assumption 3 in ARP. Note that Assumption 5(A)
implies that Assumption C.1 in ARP is satisfied, and Assumption C.2 in ARP is trivially
satisfied for X “ tX̃u. Hence, Proposition C.1 in ARP implies that Assumption 4 in ARP
is satisfied. We have thus verified the conditions for size control in Proposition 2 of ARP.

Second, consider the case where Assumption 5(B) holds. In this case, we can write
Ỹnpθq “ TUnpθq ´ ζpθq, where now T “ A, Unpθq “ β̂n, and ζpθq “ d` Ãp¨,1qθ. Assumptions
1-3 in ARP can be verified analogously to the arguments above for the case where T is as
given in Assumption 5(A). To verify Assumption 4 in ARP, we must show that

sup
ΣP PS

min
γ,γ̃PV:pΣP q,γ‰γ̃,aě0

pγ ´ aγ̃q1AΣPA
1
pγ ´ cγ̃q ą 0,

where V:pΣq is the subset of vertices in V pΣq that can be optimal when η̂ ą 0 (see Lemma
5 in ARP). By Lemma A.1 below, each γ P V pΣP q can be written as cjpΣP qγ̄j for some
element γ̄j P V pIq. Moreover, cjpΣP q “ pγ̄

1
jσ̃pΣP qq

´1, where σ̃pΣP q is the square root of the
diagonal elements of ΩP “ AΣPA

1. However, the jth diagonal element of ΩP is Apj,¨qΣPA
1
pj,¨q,

where Apj,¨q is the jth row of A. Since the eigenvalues of ΣP are bounded above by λ̄, it
follows that Apj,¨qΣPA

1
pj,¨q is bounded above by λ̄||Apj,¨q||2. The elements of σ̃pΣP q are thus

35Assumption 1 of ARP imposes the structure Yi “ TUi`ζi, where the index i corresponds with individual
observations and the sample moments are formed by averaging across i. However, this structure is only used
in the proofs of size control to show that the scaled sample moments, denoted Yn,0 in ARP, have the structure
Yn,0 “ TUn,0 ` ζn,0pθq, where Un,0 and ζn,0 are sample averages of Ui and ζi. In our setting Ỹn is analogous
to 1?

n
Yn,0 in ARP, and we thus verify this structure directly.
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bounded above, and hence cjpΣP q is bounded away from zero. Thus, there exists a
¯
c such

that cjpΣP q ě
¯
c for all ΣP P S. Hence,

sup
ΣP PS

min
γ,γ̃PV:pΣP q,γ‰γ̃,aě0

pγ ´ aγ̃q1AΣPA
1
pγ ´ aγ̃q ě

¯
c2

ˆ

sup
ΣP PS

min
γ,γ̃PV pIq,γ‰γ̃,aě0

pγ ´ aγ̃q1AΣPA
1
pγ ´ aγ̃q

˙

ě
¯
c2

ˆ

min
γ,γ̃PV:pIq,γ‰γ̃,aě0

||pγ ´ aγ̃q1A||2
¯
λ

˙

,

where the second inequality uses the fact that the minimal eigenvalue of ΣP is at least
¯
λ.

To complete the proof, it thus suffices to show that V:pIq contains only vertices such that
γ̄1jA ‰ 0, so that the lower bound obtained in the previous display is strictly positive by
Assumption 5(B). To show this, note that if γ̄1jA “ 0, then γ̄1jỸnpθ̄q “ γ̄1jpAβ̂n´d´ Ãp¨,1qθ̄q “

´γ̄1jd. Since ∆ is non-empty, there exists some δ such that Aδ ´ d ď 0, which implies
that ´γ̄1jd “ γ̄1jpAδ ´ dq ď 0 since γ̄j ě 0 by construction. We have thus established that
γ̄1jỸ pθ̄q ď 0, and hence γ̄j can never be optimal when η̂ ą 0, so γ̄j R V:pIq. We have thus
verified that Assumption 4 in ARP holds, as needed.

A.1 Proof and auxiliary lemmas for uniform consistency

Proof of Proposition 3.2

Proof. Towards contradiction, suppose that the conditional test is not consistent. Then there
exists an increasing sequence of sample sizes and distributions pnm, Pmq, x ą 0, and ω ą 0

such that

lim sup
mÑ8

EPm
„

ψCα pβ̂nm , A, d, θ
ub
Pm ` x,

1

n
Σ̂nmq



ď 1´ ω.

It is straightforward to verify that the conditional test is invariant to a re-scaling of the units
of β̂, so that ψCα pβ̂nm , A, d, θubPm ` x, 1

nm
Σ̂nmq “ ψCα p

?
nmβ̂nm , A,

?
nmd,

?
nmpθ

ub
Pm
` xq, Σ̂nmq.

Thus, along this sequence,

lim sup
mÑ8

EPm
”

ψCα p
?
nmβ̂nm , A,

?
nmd,

?
nmpθ

ub
Pm ` xq, Σ̂nmq

ı

ď 1´ ω.

Since V is compact, we can extract a further subsequence m1 under which VPm1
Ñ V ˚ for

V ˚ P V. Denote the top left block of V ˚ by Σ˚.
To obtain a contradiction, we will construct a further subsequence such that the condi-

tions of Lemma A.2 hold asymptotically with probability at least 1-ω{2. From Lemma A.1,
each element γPm1

P V pΣPm1
q can be written as cjpΣPm1

qγ̄j, where γ̄1, ..., γ̄J are the elements
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of V pIq. We argued in the proof to Proposition 3.1 that there exists a constant
¯
c such that

cjpΣP q ě
¯
c for all j whenever ΣP has eigenvalues bounded above by λ̄. By an analogous

argument, we can show that there exists a constant c̄ such that cjpΣP q ď c̄ whenever ΣP

has eigenvalues bounded below by
¯
λ. Thus,

¯
c ď cjpΣP q ď c̄ for ΣP P S. For γ P V pΣP q,

γ1AΣPA
1γ “ cjpΣP q

2γ̄1jAΣPA
1γ̄j for some j, and thus for ΣP P S, we have that

¯
c2
||γ̄1jA||

2

¯
λ ď γ1AΣPA

1γ ď c̄2
||γ̄1jA||

2λ̄.

Thus, either γ1AΣPA
1γ “ 0 (if γ̄1jA “ 0), or

¯
c2 min

j:γ̄1jA‰0
||γ̄1jA||

2

¯
λ ď γ1AΣPA

1γ ď c̄2 max
j:γ̄1jA‰0

||γ̄1jA||
2λ̄,

where the upper and lower bounds are finite and positive since V pIq is finite. Now consider
the vertex γ̂m1,j “ cjpΣ̂nm1

qγ̄j. By the continuous mapping theorem, γ̂1m1,j
AΣ̂PA

1γ̂m1,j Ñp

cjpΣ
˚q2γ̄1jAΣ˚A1γ̄j. From this convergence and the inequalities in the previous display, it

follows that there exist constants
¯
σ2 and σ̄2 such that condition (i) of Lemma A.2 is satisfied

w.p.a. 1.
Next, define

ηpβ,A, d, θ̄,Σq :“ min
η,τ̃

η s.t. Aβ ´ d´ Ãp¨,1qθ̄ ´ Ãp¨,´1qτ̃ ď ησ̃, (21)

where σ̃ is the square root of the diagonal elements of AΣA1. Since θubP P SpβP ,∆q,
ηpβP , A, d, θ

ub
P ,ΣP q ď 0. By duality, we can write ηpβP , A, d, θubP ,ΣP q “ maxγPV pΣP q γ

1pAβP ´

d´Ãp¨,1qθ
ubq. It follows that there exists some γ̃P P V pΣP q such that γ̃1P pAβP´d´Ãp¨,1qθubq “

0 and ´γ̃1P Ãp¨,1q ą 0, since otherwise for ε ą 0 sufficiently small we would have that
ηpβP , A, d, θ

ub
P ` ε,ΣP q “ maxγPV pΣP q γ

1pAβP ´ d ´ Ãp¨,1qpθ
ub ` εqq ď 0, which would im-

ply that θub ` ε P SpβP ,∆q, which is a contradiction. From Lemma A.1, γ̃Pm1
P V pΣPm1

q

can be written as cjpΣPm1
qγ̄j, where cjpΣq ě

¯
c ą 0 for all Σ P S and γ̄1, ..., γ̄J are the ele-

ments of V pIq. Since V pIq is finite, we can extract a further subsequence pnl, Plq such that
γ̃Pl “ cj˚pΣPlqγ̃j˚ for fixed j˚. For ease of notation, without loss of generality we assume
j˚ “ 1. It follows that

ηp
?
nlβ̂nl , A,

?
nld,

?
nlpθ

ub
Pl
` xq, Σ̂nlq “ max

γPV pΣ̂nl q
γ1
?
nlpAβ̂nl ´ d´ Ãp¨,1qpθ

ub
Pl
` xqq

ě
?
nlc1pΣ̂nlqγ̄

1
1pAβ̂nl ´ d´ Ãp¨,1qpθ

ub
Pl
` xqq

“ c1pΣ̂nlq
?
nlγ̄

1
1Apβ̂nl ´ βPlq `

?
nlc1pΣ̂nlqp´γ̃

1
1Ãp¨,1qqx.
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By the continuous mapping theorem, c1pΣ̂nlq Ñp c1pΣ
˚q ą 0. Assumption 6 and the contin-

uous mapping theorem together imply that the first term in the previous display converges
in distribution to a N p0, c1pΣ

˚q2γ̄11AΣ˚A1γ̄1q distribution, while the second term converges
in probability to 8. It follows that ηp

?
nlβ̂l, A,

?
nld,

?
nlpθ

ub
Pl
` xq, Σ̂nlq Ñp 8, and thus

condition (ii) of Lemma A.2 holds w.p.a. 1 for any value of M .
To complete the proof, we construct a further subsequence such that condition (iii) of

Lemma A.2 holds asymptotically with probability at least 1-ω{2. Let Ỹl “ Aβ̂nl ´ d ´

Ãp¨,1qpθ
ub
Pl
` xq and µ̃l “ AβPl ´ d ´ Ãp¨,1qpθ

ub
Pl
` xq. Recall that any element of V pΣ̂nlq, say

γl,j, takes the form γl,j “ cjpΣ̂nlqγ̄j, and our argument above implies that γ̄1jµ̃l ď ´γ̄1jÃp¨,1qx.
Since cjpΣ̂nlq Ñp cjpΣ

˚q ą 0 by the continuous mapping theorem, and γ̄1jµ̃l is bounded from
above, we can extract a subsequence l1 along which γ1l1,jµ̃l1 Ñp νj P R Y t´8u. The vertex
set is finite, and so passing to further subsequences we obtain a subsequence indexed by k
such that γ1k,jµ̃k Ñp νj P RY t´8u for all j. Observe that for distinct vertices i and j with
γ̄1iA ‰ 0,

pcipΣ̂nkqγ̄i ´ cjpΣ̂nkqγ̄jq
1
?
nkỸk “pcipΣ̂nkqγ̄i ´ cjpΣ̂nkqγ̄jq

1
?
nkpỸk ´ µ̃kq`

?
nkpcipΣ̂nkq ´ cipΣ

˚
qqγ̄1iµ̃k ´

?
nkpcjpΣ̂nkq ´ cjpΣ

˚
qqγ̄1jµ̃k`

?
nkpcipΣ

˚
qγ̄1i ´ cjpΣ

˚
qγ̄1jqµ̃k

Consider first the case where γ1k,iµ̃k and γ1k,jµ̃k both have finite limits νi and νj. Since
?
nkpcipΣ

˚qγ̄1i ´ cjpΣ
˚qγ̄1jqµ̃k is non-stochastic, we can extra a further subsequence k1 such

that ?nk1pcipΣ
˚qγ̄1i ´ cjpΣ

˚qγ̄1jqµ̃k1 Ñ ν˚ P R Y t˘8u. Assumption 6 and the continuous
mapping theorem imply that pcipΣ̂nk1

qγ̄i ´ cjpΣ̂nk1
qγ̄jq

1?nk1Ỹk1 converges in distribution to

ζij “ pcipΣ
˚
qγ̄i ´ cjpΣ

˚
qγ̄jq

1Aξβ `
νi

cipΣ˚q
Dc1iξΣ ´

νj
cjpΣ˚q

Dc1jξΣ ` ν
˚,

where pξ1β, ξ1Σq1 „ N p0, V ˚q and Dci is the gradient of cipΣ˚q with respect to vecpΣ˚q. The
limiting distribution is normal, and limiting variance must be positive since Assumptions
5 and 7 imply that pcipΣ˚qγ̄i ´ cjpΣ

˚qγ̄jq
1Aξβ has positive variance36 and is not perfectly

colinear with ξΣ. It follows that for any ϑ, there exists some ε ą 0 such that the probability
that ζij P p´ε, εq is less than ϑ. On the other hand, if γ̄1iµ̃k Ñ ´8, then cipΣ̂nkqγ̄i

?
nkỸk Ñp

´8, so cipΣ̂nkqγ̄i is optimal for η̂p
?
nkβ̂nk ,

?
nkd,

?
nkpθ

ub
Pk
` xq, Σ̂nkq w.p.a. 0, whereas if

γ̄1jµ̃k Ñ ´8, then η̂p
?
nkβ̂nk ,

?
nkd,

?
nkpθ

ub
Pk
` xq, Σ̂nkq ´ cjpΣ̂kqγ

1
j

?
nkỸk Ñp 8. Since there

36This is immediate under Assumption 5(ii). Under Assumption 5(i), the proof of Proposition C.2 in ARP
shows that if there is a positive constant c such pγ̄i ´ cγ̄jq1A “ 0, then cipΣ̂nk

qγ̄i and cjpΣ̂nk
qγ̄j can only be

optimal vertices if η̂ ď 0. Since we’ve shown η̂ Ñp 8, such vertices will be optimal w.p.a. 0, and thus can
be ignored when establishing part (iii) of Lemma A.2.
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are a finite number of pairs of vertices, we can choose ϑ such that the probability that
ζij P p´ε, εq for any pi, jq is bounded above by ω{2, and thus condition (iii) of Lemma A.2 is
satisfied with probability at least ω{2, as we wished to show. The result for the hybrid test
is immediate from the fact that the hybrid test rejects whenever the size-α´κ

1´κ
conditional

test rejects.

Lemma A.1. Let F pΣq :“ tγ : Ã1
p¨,´1qγ “ 0, σ̃pΣq1γ “ 1, γ ě 0u be the feasible set of the

dual problem, where σ̃pΣq is the vector containing the square-roots of the diagonal elements
of AΣA1. Let V pΣq denote the set of vertices of F pΣq. Then, for any Σ positive definite,

V pΣq “ tc1pΣqγ̄1, ..., cJpΣqγ̄Ju,

where γ̄1, ..., γ̄J are the elements of V pIq and cjpΣq “ pγ̄1jσ̃pΣqq´1.

Proof of Lemma A.1

Proof. Recall that v is a vertex of the polyhedron P “ tx P RK : Wx ď bu iff v P P and
WpJ ,¨qx “ bJ for J a set of indices such that WpJ ,¨q has K independent rows (see Section 8.5
of Schrijver (1986)). It follows that v P V pΣq iff v ě 0 and there exists J such that

WJ :“

¨

˚

˝

Ã1
p¨,´1q

´IpJ ,¨q

σ̃1

˛

‹

‚

has row rank equal to K, and WJ v “

¨

˚

˝

0

0

1

˛

‹

‚

, where K is the number of rows of A.

Now, let J be the set of indices J such that W̃J :“

˜

Ã1
p¨,´1q

´IpJ ,¨q

¸

has exactly K ´ 1

linearly independent rows and there exists a vector vJ ‰ 0 such that W̃J v “ 0 and vJ ě 0.
Since by construction W̃J has rank K ´ 1 and K columns, its nullspace is 1-dimensional. It
is then immediate that for each J P J , there is a unique vector v̄J ě 0 such that W̃J v̄J “ 0

and ι1V̄J “ 1, where ι is the vector of ones. Moreover, J is finite, since there are a finite
number of possible subindices of I, and thus we can write tv̄J : J P J u “ tγ̄1, ..., γ̄Ju for
distinct vectors γ̄1, ..., γ̄J .

It now remains to show that V pΣq “ tc1pΣqγ̄1, ..., cJpΣqγ̄Ju, for cj as defined above.
First, suppose that v “ cjpΣqγ̄j for some j. By construction, Ã1

p¨,´1qv “ 0, v ě 0, and σ̃1v “

pσ̃1vjq
´1pσ̃1vjq “ 1, and so v P F . Additionally, there exists J such that W̃J “

˜

Ã1
p¨,´1q

´IpJ ,¨q

¸

A-6



has rank K ´ 1 and W̃J v “ 0. From the fact that W̃J v “ 0, whereas σ̃1v “ 1, we see that σ̃1

must be linearly independent from the rows of W̃J , and thus WJ “

˜

W̃J

σ̃1

¸

has rank K.

It follows that v P V pΣq.
Next, suppose that v P V pΣq. Then v ě 0, and there exists J such that

WJ :“

¨

˚

˝

Ã1
p¨,´1q

´IpJ ,¨q

σ̃1

˛

‹

‚

has row rank equal to K, and WJ v “

¨

˚

˝

0

0

1

˛

‹

‚

. Let W̃J “

˜

Ã1
p¨,´1q

´IpJ ,¨q

¸

. Note that since

W̃J v “ 0, whereas σ̃1v “ 1, σ̃1 must be linearly independent of the other rows of WJ , from
which it follows that W̃ has row rank K ´ 1. Thus, J P J , and so v “ cγ̄j for some j and
c ą 0. Since σ̃1v “ 1, we have cσ̃1γ̄j “ 1, which implies c “ pσ̃1γ̄jq´1, which gives the desired
result.

Finally, by construction, γ̄1jι “ 1, and so cjpIq “ 1 for all j, so γ̄1, ..., γ̄J correspond
precisely with the elements of V pIq.

Lemma A.2. For any positive constants ε,
¯
σ2, σ̄2, there exists a finite constant C̄ such that

the conditional test ψCα pβ̂, A, d, θ,Σq rejects whenever the following conditions are satisfied

(i) For all γ P V pΣq, either γ1AΣA1γ “ 0 or
¯
σ2 ď γ1AΣA1γ ď σ̄2.

(ii) η̂ “ maxγPV pΣq γ
1Ỹ ą C̄, where Ỹ “ Aβ̂ ´ d´ Ãp¨,1qθ.

(iii) If the optimal vertex γ˚ satisfies, γ1˚AΣA1γ˚ ą 0, then for all γ̃ P V pΣq with γ̃ ‰ γ˚, we
have that |γ1˚Ỹ ´ γ̃1Ỹ | ą ε.

Proof. Let Σ̃ “ AΣA1. If the optimal vertex γ˚ satisfies γ1˚Σ̃γ˚ “ 0, then the conditional
test rejects whenever η̂ ą 0, so condition (ii) with any C ą 0 suffices. For the remainder of
the proof, we show that conditions (i)-(iii) are sufficient when γ1˚Σγ˚ ‰ 0. Observe that the
conditional test rejects if and only if η̂ ą 0 and

Φptq ´ Φpzloq

Φpzupq ´ Φpzloq
ą 1´ α,

where t “ η̂
σ˚
, zlo “ vlo

σ˚
, zup “ vup

σ˚
, and σ˚ “

b

γ1˚Σ̃γ˚. It is clear that the left-hand side of
the previous display is increasing in t and decreasing in zup. It is also decreasing in zlo, since
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the derivative with respect to zlo is

´
φpzloqpΦpz

upq ´ Φpzloqq

pΦpzupq ´ Φpzloqq2
ă 0.

From Lemma A.3 below, condition (iii) implies that η̂ ´ vlo ě ε, and thus zlo ď t ´ ε̃, for
ε̃ “ ε{σ̄. This, combined with the previous discussion, implies that the conditional test
rejects whenever η̂ ą 0 and

Φptq ´ Φpt´ ε̃q

1´ Φpt´ ε̃q
ą 1´ α.

By L’Hopitale’s rule, we have that

lim
tÑ8

Φptq ´ Φpt´ ε̃q

1´ Φpt´ ε̃q
“ lim

tÑ8

φpt´ ε̃q ´ φptq

φpt´ ε̃q
“ lim

tÑ8
1´

φptq

φpt´ ε̃q
“ 1.

Hence, there exists C̃ ą 0 such that the conditional test rejects whenever t ě C̃. But t “ η̂
σ˚

and thus t ą C̃ whenever η̂ ą C̄ for C̄ “ C̃σ̄.

Lemma A.3. Consider the conditional test ψCα pβ̂, A, d, θ,Σq. If the optimal vertex γ˚ is such
that γ1˚AΣA1γ˚ ą 0, then η̂ ´ vlo ě minγPV pΣq,γ‰γ˚ |γ

1
˚Ỹ ´ γ1Ỹ | where Ỹ “ Aβ̂ ´ d ´ Ãp¨,1qθ.

Similarly, vup ´ η̂ ě γ1˚AΣA1γ˚
maxγPV pΣq γ1AΣA1γ

minγPV pΣq,γ‰γ˚ |γ
1
˚Ỹ ´ γ

1Ỹ |.

Proof. Since η̂ is finite, the results hold trivially when vlo and vup are infinite. For the
remainder of the proof, we assume that they are finite. Let Σ̃ “ AΣA1. Lemma 2 in ARP
implies that

vlo “ min
γPV pΣq:γ1˚Σ̃γ˚´γ1˚Σ̃γą0

γ1˚Σ̃γ˚γ
1S

γ1˚Σ̃γ˚ ´ γ
1
˚Σ̃γ

,

where S “ pI ´ Σ̃γ˚
γ1˚Σ̃γ˚

γ1˚qỸ . Let γ̃ denote the vertex at which the minimum is obtained.
Substituting in the definition of S and re-arranging terms, we obtain that

η̂ ´ vlo “
γ1˚Σ̃γ˚

γ1˚Σ̃γ˚ ´ γ
1
˚Σ̃γ̃

pγ1˚Ỹ ´ γ̃
1Ỹ q ě pγ1˚Ỹ ´ γ̃

1Ỹ q,

from which the result for vlo is immediate. We can analogously show that

vup ´ η̂ “
γ1˚Σ̃γ˚

γ1˚Σ̃γ̃ ´ γ
1
˚Σ̃γ˚

pγ1˚Ỹ ´ γ̃
1Ỹ q,

for a vertex γ̃ such that γ1˚Σ̃γ̃ ´ γ1˚Σ̃γ˚ ą 0. The result then follows from noting that
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γ1˚Σ̃γ˚

γ1˚Σ̃γ̃ ´ γ
1
˚Σ̃γ˚

ě
γ1˚Σ̃γ˚

γ1˚Σ̃γ̃
ě

γ1˚Σ̃γ˚

maxγPV pΣq γ1Σ̃γ
.

A.2 Proof and auxiliary lemmas for uniform local asymptotic power

Proof of Proposition 3.3

Proof. By an invariance to scale argument as in Proposition 3.2, it is sufficient to show that

lim
nÑ8

sup
PPPε

ˇ

ˇ

ˇ
EP

”

ψCα p
?
nβ̂n, A,

?
nd,

?
nθubP ` x, Σ̂nq

ı

´ ρ˚αpP, xq
ˇ

ˇ

ˇ
“ 0.

To show this, it suffices to establish that for every subsequence pnm, Pmq with nm Ñ 8,
there exists a further subsequence l such that

lim
lÑ8

ˇ

ˇ

ˇ
EPl

”

ψCα p
?
nlβ̂nl , A,

?
nld,

?
nθubPl ` x, Σ̂nlq

ı

´ ρ˚αpPl, xq
ˇ

ˇ

ˇ
“ 0.

Since Pm P Pε, for each m there exists a B˚m and a value τ̃˚m such that

ApB˚m,¨qβPm ´ dB˚m ´ ÃpB˚m,1qθ
ub
Pm ´ ÃpB˚m,´1qτ̃

˚
m “ 0 (22)

Ap´B˚m,¨qβPm ´ d´B˚m ´ Ãp´B˚m,1qθ
ub
Pm ´ Ãp´B˚m,´1qτ̃

˚
m ă ´ε. (23)

Since there are a finite number of possible values of B˚m, we can extract a subsequence m1

along which B˚m1
is constant. For simplicity of notation, we’ll denote the constant value

B˚m1
by B˚. Similarly, Lemma A.4 implies that there is a unique element γ˚m1

P V pΣPm1
q

such that the elements of γ˚m1
in positions ´B˚ are all 0. By Lemma A.1, we can write

γ˚m1
“ cjpΣPm1

qγ̄j for cjp¨q a continuous function and γ̄j P V pIq. Since V pIq is finite,
we can extract a subsequence m2 along which γ˚m2

“ cj˚pΣPm2
qγ̄j˚ for a fixed j˚, which

without loss of generality we normalize to j˚ “ 1. Moreover, since S is compact, we can
extract a further subsequence l along which ΣPl Ñ Σ˚. By Assumption 4, Σ̂nl Ñp Σ˚. The
continuous mapping theorem then implies that γ˚l “ c1pΣPlqγ̄1 Ñ c1pΣ

˚qγ̄1, and likewise,
γ̂˚l :“ c1pΣ̂nlqγ̄1 Ñp c1pΣ

˚qγ̄1. From Lemma A.9, we have that

ρ˚αpPl, xq “ Φ

˜

´γ˚1l Ãp¨,1qx
a

γ˚1l AΣPlA
1γ˚l

´ z1´α

¸

,
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which combined with the convergences shown above implies that

ρ˚αpPl, xq Ñ Φ

˜

´γ̄11Ãp¨,1qx
a

γ̄11AΣ˚A1γ̄1

´ z1´α

¸

. (24)

Now, for the function ηp¨q defined in (21), let

η̂l “ ηp
?
nlβ̂nl , A,

?
nld,

?
nlθ

ub
Pl
` x, Σ̂nlq.

By duality, we have that

η̂l “ max
γPV pΣ̂nl q

γ1
´?

nAβ̂nl ´
?
nld´

?
nlÃp¨,1qθ

ub
Pl
´ Ãp¨,1qx

¯

ě γ̂˚1l

´?
nAβ̂nl ´

?
nld´

?
nlÃp¨,1qθ

ub
Pl
´ Ãp¨,1qx

¯

.

By construction, γ̂˚l has zero elements in positions ´B˚ and satisfies γ̂˚1l Ãp¨,´1q “ 0. This,
combined with equation (22) implies that

γ̂˚1l

´

?
nlAβ̂nl ´

?
nld´

?
nlÃp¨,1qθ

ub
Pl
´ Ãp¨,1qx

¯

“ γ̂˚1l A
?
nlpβ̂nl ´ βPlq ´ γ̂

˚1
l Ãp¨,1qx.

From Assumption 2 combined with Slutsky’s lemma, we have that

γ̂˚1l A
?
nlpβ̂nl ´ βPlq ´ γ̂

˚1
l Ãp¨,1qxÑd N

´

´c1pΣ
˚
qγ̄11Ãp¨,1qx, c1pΣ

˚
q
2γ̄11AΣ˚A1γ̄1

¯

.

Now, consider γ̂l,j “ cjpΣ̂nlqγ̄j for j ‰ 1. By construction γ̄j ě 0, and Lemma A.4 implies
that γ̄j has a non-zero element in at least one component in B˚. But this, combined with
equations (22) and (23) and the fact that cjpΣ̂nlq Ñp cjpΣ

˚q ą 0, implies that

γ̂1l,j

´

?
nlAβPl ´

?
nld´

?
nlÃp¨,1qθ

ub
Pl
´ Ãp¨,1qx

¯

Ñp ´8,

and thus
γ̂1l,j

´

?
nlAβ̂nl ´

?
nld´

?
nlÃp¨,1qθ

ub
Pl
´ Ãp¨,1qx

¯

Ñp ´8,

as well, since as before γ̂1l,jA
?
npβ̂nl ´ βPlq converges in distribution to a normal distribu-

tion with finite variance. This implies that γ̂˚l is the optimizer of the problem for η̂l with
probability approaching 1, and thus

η̂l Ñd N
´

´c1pΣ
˚
qγ̄11Ãp¨,1qx, c1pΣ

˚
q
2γ̄11AΣ˚A1γ̄1

¯

.
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This also implies that for any j ‰ 1, |η̂l ´ γ̂1l,jỸl| Ñp 8, where Ỹl “
?
nlAβ̂nl ´

?
nld ´

?
nlÃp¨,1qθ

ub
Pl
´ Ãp¨,1qx. Since there are a finite number of vertices, it follows that minj‰1 |η̂l ´

γ̂1l,jỸl| Ñ ´8. This together with the result of Lemma A.3 implies that |η̂l ´ vlol | Ñp 8 and
|η̂l´v

up
l | Ñp 8, where vlol , v

up
l are the values of vlo, vup associated with the ψCα p

?
nlβ̂nl , A,

?
nld,

?
nlθ

ub
Pl
`

x, Σ̂nlq test. Since η̂l is stochastically bounded, and by construction vlol ď η̂l ď vupl , it follows
that vlol Ñp ´8 and vupl Ñp 8. Let σ̂2

l “ γ1˚,lAΣ̂nlA
1γ˚,l denote the variance at the optimal

vertex used by the ψCα p
?
nlβ̂nl , A,

?
nld,

?
nlθ

ub
Pl
` x, Σ̂nlq test. Since, we’ve shown that γ̂˚l is

optimal w.p.a. 1, we have that σ̂2
l Ñp c1pΣ

˚q2γ̄11AΣ˚A1γ̄1. From another application of the
continuous mapping theorem, we have that

Φpη̂l{σ̂lq ´ Φpvlol {σ̂lq

Φpvupl {σ̂lq ´ Φpvlol {σ̂lq
Ñd

Φpξq ´ Φp´8q

Φp8q ´ Φp´8q
“ Φpξq,

where ξ „ N
´

´γ̄11Ãp¨,1qx{
a

γ̄11AΣ˚Aγ̄1, 1
¯

. The limiting distribution is continuous, and
thus

PPl

ˆ

Φpη̂l{σ̂lq ´ Φpvlol {σ̂lq

Φpvupl {σ̂lq ´ Φpvlol {σ̂lq
ą 1´ α

˙

Ñ P pΦpξq ą 1´ αq “ Φ

˜

´γ̄1Ãp¨,1qx
?
γ̄1AΣ˚A1γ̄1

´ z1´α

¸

.

Moreover, for α ă 0.5, zlo sufficiently small, and zup sufficiently large, pΦpη̂lq´Φpzloqq{pΦpzupq´

Φpzloqq ą 1´ α only if η̂l ą 0. It follows that

PPl

ˆ

Φpη̂l{σ̂lq ´ Φpvlol {σ̂lq

Φpvupl {σ̂lq ´ Φpvlol {σ̂lq
ą 1´ α, η̂l ą 0

˙

Ñ Φ

˜

´γ̄1Ãp¨,1qx
?
γ̄1AΣ˚A1γ̄1

´ z1´α

¸

.

However, the event in the previous display is precisely the event that ψCα p
?
nlβ̂l, A,

?
nld,

?
nlθ

ub
P `

x, Σ̂nlq “ 1, and thus

EPl
”

ψCα p
?
nlβ̂l, A,

?
nld,

?
nlθ

ub
P ` x, Σ̂nlq

ı

Ñ Φ

˜

´γ̄1Ãp¨,1qx
?
γ̄1AΣ˚A1γ̄1

´ z1´α

¸

.

The result is then immediate from the previous display combined with (24).

Lemma A.4. If LICQ holds in direction l at βP , then there exists a unique γ̄ P V pΣP q such
that γ̄´B˚ “ 0, where B˚ is the set of binding moments at the optimum to (16).

Proof. We first show that there is at most one such γ̄. By definition, any vertex γ P V pΣP q

satisfies γ1Ãp¨,´1q “ 0. Recall that Ã “ Ap¨,postqΓ
´1, where Γ is full rank. LICQ implies that

ApB˚,postq has full row rank, and thus so does ÃpB˚,¨q. It follows that ÃpB˚,´1q has rank at
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least |B˚| ´ 1. If the rank is |B˚|, then there are no non-zero solutions to γ1B˚ÃpB˚,´1q “ 0,
and thus there are no vertices with γ´B˚ “ 0. If the rank is |B˚| ´ 1, then any solution to
γ1Ãp¨,´1q “ 0 with γ´B˚ “ 0 takes the form γB˚ “ c ¨ ν for some constant c and ν a vector
the generates the one-dimensional nullspace of ÃpB˚,´1q. However, any γ P V pΣP q also must
satisfy γ1σ̃ “ 1, which uniquely pins down the constant c. Thus, there is at most one element
of the feasible set with γ´B˚ “ 0.

We next show that there exists such a γ̄. Consider the optimization ηpβP , A, d, θubP ,ΣP q for
ηp¨q defined in (21). As argued in the proof to Proposition 3.2, since θubP is on the boundary
of the identified set, we must have ηpβP , A, d, θubP ,ΣP q “ 0. However, LICQ implies that
there exists a value τ̃˚ such that

ApB˚,¨qβP ´ dB˚ ´ ÃpB˚,1qθ
ub
P ´ ÃpB˚,´1qτ̃

˚
“ 0

Ap´B˚,¨qβP ´ d´B˚ ´ Ãp´B˚,1qθ
ub
P ´ Ãp´B˚,1qτ̃

˚
ă 0.

In particular, this holds for τ̃˚ “ Γp´1,¨qτ
˚. It follows that pη, τ̃q “ p0, τ̃˚q is a solution to

ηpβP , A, d, θ
ub
P ,ΣP q. By duality, there is some γ̄ P V pΣP q that is a Lagrange multiplier for

this optimization problem. The complementary slackness conditions imply, however, that
γ̄´B˚ “ 0, as needed.

Lemma A.5. Suppose β̂ „ N pβ, Σq for Σ known. Let B0 be a closed, convex set. Then
the most-powerful size α test of H0 : β P B0 against the point alternative HA : β “ βA

is equivalent to the most powerful test of H0 : β “ β̃ against HA : β “ βA, where β̃ “
arg minβPB0

||β´βA||Σ and || ¨ ||Σ is the Mahalanobis norm in Σ, ||x||Σ “
?
x1Σ´1x. The most

powerful test rejects for values of pβA´ β̃q1Σ´1β̂ greater than pβA´ β̃q1Σ´1β̃`z1´α||βA´ β̃||Σ,
and has power against the alternative of Φp||βA ´ β̃||Σ ´ z1´αq, for z1´α the 1 ´ α quantile
of the standard normal.

Proof. Define ă ¨, ¨ ąΣ by ă x, y ąΣ“ x1Σ´1y, and observe that ă ¨, ¨ ąΣ is an inner product.
The result then follows immediately from the discussion in Section 2.4.3 of Ingster and Suslina
(2003), replacing all instances of the usual euclidean inner product with ă ¨, ¨ ąΣ.

Lemma A.6. Let B be a closed, convex subset of RK, and βA R B. Let β̃ “ arg minβPB ||β´

βA||Σ, where ||x||2Σ “ x1Σ´1x for some positive definite matrix Σ. Then for any β P B,
pβ̃ ´ βAq

1Σ´1pβ ´ β̃q ě 0.

Proof. Consider any β P B. Define βθ “ θpβ´ β̃q` β̃, and note that since B is convex βθ P B
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for any θ P r0, 1s. Further,

||βθ ´ βA||
2
Σ “ θ2

||β ´ β̃||2Σ ` 2θpβ̃ ´ βAq
1Σ´1

pβ ´ β̃q ` ||β̃ ´ βA||
2
Σ.

Differentiating with respect to θ, we have

B

Bθ
||βθ ´ βA||

2
Σ “ 2θ||β ´ β̃||2Σ ` 2pβ̃ ´ βAq

1Σ´1
pβ ´ β̃q,

from which we see that the derivative evaluated at θ “ 0 is 2pβ̃ ´ βAq
1Σ´1pβA ´ β̃q. Since β̃

minimizes the norm, it follows that we must have 2pβ̃ ´ βAq
1Σ´1pβA ´ β̃q ě 0, else we could

achieve a lower value of the norm at βθ by choosing θ ą 0 sufficiently small.

Lemma A.7. Let B “ tβ P RK : v1β ď du for some v P RKzt0u and d P R. Let
β̃ “ arg minβPB ||β´βA||Σ for some βA R B, where ||x||2Σ “ x1Σ´1x and Σ is positive definite.
Then pβA ´ β̃q1Σ´1 “ c ¨ v1 for the positive constant c “ v1βA´d

v1Σv
.

Proof. Note that we can form a basis v, ṽ2, ..., ṽK such that v1ṽj “ 0 for j “ 2, ..., K. It
follows by construction that for any j “ 2, .., K and any t P R, β̃ ` t ¨ ṽj P B. Hence, from
Lemma A.6, ´pβA ´ β̃q1Σ´1ptṽjq ě 0. Since we can choose t both positive and negative, it
follows that pβA´ β̃q1Σ´1ṽj “ 0 for all j. Since pβA´ β̃q1Σ´1 is orthogonal to tṽ2, ..., ṽKu, and
tv, ṽ2, ..., ṽKu form a basis, we have that pβA ´ β̃q1Σ´1 “ c ¨ v1, for some c P R. Multiplying
both sides of the equation on the right by Σv, we obtain that pβA´ β̃q1v “ c ¨v1Σv. However,
since β̃ is the closest point to βA in Mahalanobis distance, it must be on the boundary of B,
and so v1β̃ “ d. It follows that c “ pv1βA ´ dq{pv1Σvq, which is clearly positive since βA R B
and thus v1βA ą d.

Lemma A.8 (Power of optimal test for linear subspace). Let B “ tβ P RK : v1β ď du

for some v P RKzt0u and d P R. Suppose β̂ „ N pβ, Σq for Σ positive definite known, and
consider the problem of testing H0 : β P B against HA : β “ βA for some βA R B. Then the
most powerful size-α test of H0 against HA is a one-sided t-test that rejects for large values
of v1β̂, and has power equal to Φppv1βA ´ dq{

?
v1Σv ´ z1´αq.

Proof. From Lemma A.5, the most powerful test rejects for large values of pβA ´ β̃q1Σ´1β̂,
where β̃ “ arg minβPB ||β ´ βA||Σ, and has power Φp||βA ´ β̃||Σ ´ z1´αq. By Lemma A.7,
pβA ´ β̃q

1Σ´1 “ cv1, for c “ pv1βA ´ dq{pv1Σvq. It follows that

||βA ´ β̃||
2
Σ “ pβA ´ β̃q

1Σ´1
pβA ´ β̃q

“ cv1pβA ´ β̃q

“ cpv1βA ´ dq “ pv
1βA ´ dq

2
{pv1Σvq,
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where we use the fact that v1β̃ “ d, since β̃ must be on the boundary of B, as argued in the
proof to Lemma A.7. The result then follows immediately.

Lemma A.9. If P P Pε, then ρ˚αpP, xq “ Φ

˜

´γ̄1Ãp¨,1qx
?
γ̄1AΣPA1γ̄

´ z1´α

¸

, where γ̄ P V pΣP q is the

unique element of V pΣP q with γ̄´B˚ “ 0 (see Lemma A.4).

Proof. Suppose β̂n „ N pβP , ΣP {nq. Let Bn “ tβ : θubP `x{
?
n P Spβ,∆qu be the set of values

for β consistent with the null that θ “ θubP ` x{
?
n. Observe that Bn “ tβ : ηpβ,A, d, θub `

x{
?
n,ΣP q ď 0u, where ηp¨q is defined in (21). From Lemma A.5, the most powerful test of

H0 : β P Bn against H1 : β “ βP rejects for large values of pβP ´ β̃q1Σ´1
P β̂n. To derive the

optimal test, it is instructive to first consider a simpler testing problem. From Lemma A.4,
there exists a unique γ̄ P V pΣP q such that γ̄´B˚ “ 0, where B˚ are the binding rows at the
solution to (16) satisfying LICQ. Define Bγ̄n “ tβ : γ̄1pAβ´d´ Ãp¨,1qpθ

ub
P `x{

?
nqq ď 0u. We

first consider testing H̃0 : β P Bγ̄n against H1 : β “ βP . From Lemma A.7, the optimal test
rejects for large values of γ̄1Aβ̂n and has power Φp h?

γ̄1AΣPA1γ̄{n
´ z1´αq, where

h “ γ̄1pAβP ´ d´ Ãp¨,1qpθ
ub
P ` x{

?
nqq. (25)

From the definition of LICQ in direction l, however, there exists a value τ̃˚ such that

ApB˚,¨qβP ´ dB˚ ´ ÃpB,1qθ
ub
P ´ ÃpB,´1qτ̃

˚
“ 0 (26)

Ap´B˚,¨qβP ´ d´B˚ ´ Ãp´B,1qθ
ub
P ´ Ãp´B,1qτ̃

˚
ă 0 (27)

By construction, γ̄1Ãp¨,´1q “ 0 and γ̄´B˚ “ 0, which combined with the previous two dis-
plays implies that h “ ´γ̄1Ãp¨,1qx{

?
n, and hence the power of the optimal test of H̃0 is

Φ

˜

´γ̄1Ãp¨,1qx
?
γ̄1AΣPA1γ̄

´ z1´α

¸

.

To complete the proof, it thus suffices to show that the optimal test of H̃0 against H1 is
the same as the optimal test of H0 against H1 for n sufficiently large. To this end, note that
Bn Ď Bγ̄n, since by duality,

ηpβ,A, d, θub`x{
?
n,ΣP q “ max

γPV pΣP q
γ1pAβ´d´Ãp¨,1qpθ

ub
P `x{

?
nqq ě γ̄1pAβ´d´Ãp¨,1qpθ

ub
P `x{

?
nqq.

Thus, Lemma A.5 implies that the optimal test under H0 coincides with the optimal test
under H1 whenever β̃n “ arg minβPBγ̄n ||β ´ βP ||ΣP {n is in Bn. From Lemma A.7, however,
β̃1n “ β1P `

h?
γ̄1AΣPA1γ̄{n

v1pΣP {nq, for h defined in (25). Using the equality h “ ´γ̄1Ãp¨,1qx{
?
n
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derived above, we see that

β̃1n “ β1P ´
1
?
n

γ̄1Ãp¨,1qx
?
γ̄1AΣPA1γ̄

γ̄1AΣP ,

and thus we can write β̃ “ βP ´ ν{
?
n for a finite vector ν. From Lemma A.4, every

γ P V pΣP q with γ ‰ γ̄ has γ´B˚ ‰ 0. Since γ ě 0 by construction, equations (26) and (27)
imply that

γ1pAβP ´ d´ Ãp¨,1qθ
ub
P q ă 0

for all γ ‰ γ̄, where we use the fact that γ1Ãp¨,´1q “ 0 by construction. We’ve shown,
however, that γ̄1pAβP ´ d ´ Ãp¨,1qθ

ub
P q “ 0. By continuity arguments, it follows that for n

sufficiently large,

ηpβ̃, A, d, θubP ` x{
?
n,ΣP q “ max

γPV pΣP q
γ1pApβP ´ ν{

?
nq ´ d´ Ãp¨,1qpθ

ub
P ` x{

?
nqq

is equal to
γ̄1pApβP ´ ν{

?
n´ d´ Ãp¨,1qpθ

ub
P ` x{

?
nqq,

and thus β̃n P Bn, as we wished to show.

A.3 Proofs and auxiliary lemmas for FLCIs

Proof of Proposition 4.2

Proof. First, suppose Assumption 9 holds. Without loss of generality, we show P
`

pθub ` xq P CFLCIα,n

˘

Ñ

0 for any x ą 0. By Lemma A.11 there exists pā, v̄q such that b̄pā, v̄q “ 1
2
LIDpδpre,∆q “: b̄min

and Eβ̂n„N pδ`τ,Σnq
”

ā` v̄1β̂n

ı

“ 1
2
pθub` θlbq “: θmid. Let C̄n :“ ā` v̄1β̂n˘χnpā, v̄q denote the

fixed length confidence interval based on pā, v̄q.
By construction, χ̄n :“ χnpā, v̄q is the 1´α quantile of the |N

`

b̄min, σ
2
v̄,n

˘

| distribution.
Since σ2

v̄,n “
1
n
σ2
v̄,1 Ñ 0, the |N

`

b̄min, σ
2
v̄,n

˘

| distribution collapses to a point mass at b̄min,
and thus χ̄n Ñ b̄min. By construction, the half-length of the shortest FLCI χn :“ χnpan, vnq

must be less than or equal to χ̄n, and so lim supnÑ8 χn ď b̄min. Let bn :“ b̄pan, vnq be the
worst-case bias of the optimal FLCI. Since α P p0, 0.5s, Lemma A.12 implies that χn ě bn.
Additionally, Lemma A.10 implies that bn ě 1

2
LIDpδpre,∆q “ b̄min, and thus χn ě b̄min.

Hence, χn Ñ b̄min implies bn Ñ b̄min. Additionally, note that for α P p0, 0.5s, χnpa, vq is
increasing in both b̄pa, vq and σv,n. Since b̄min ď bn and χn ď χ̄n, it must be that σvn,n ď σv̄,n,
from which it follows that σvn,n Ñ 0.
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Now, we claim that µn :“ Eβ̂n„N pδ`τ,Σnq
”

an ` v
1
nβ̂n

ı

converges to θmid :“ 1
2
pθub ` θlbq.

To show this, note that µn “ an ` v1nβ for β “ δ ` τ . Since θub, θlb P Spβ,∆q, by the
definition of the identified set there exist δub, δlb P ∆ and τub, τ lb such that β “ δub ` τub “

δlb ` τ lb, θub “ l1τubpost, and θlb “ l1τ lbpost. Thus, θub ´ Eβ̂n„N pβ,Σnq
”

an ` v
1
nβ̂n

ı

“ θub ´ µn and

Eβ̂n„N pβ,Σnq
”

an ` v
1
nβ̂n

ı

´ θlb “ µn ´ θlb. This implies that bn ě maxtθub ´ µn, µn ´ θlbu “

b̄min ` |µn ´ θ
mid|, where the equality uses the fact that θub ´ θlb “ LIDpδA,pre,∆q “ 2b̄min.

Since we’ve shown that bn Ñ b̄min, it follows that µn Ñ θmid, as desired.
Next, note that if β̂n „ N pδ ` τ, Σnq, then an ` v1nβ̂n „ N

`

µn, σ
2
vn,n

˘

. Observe that
θ̄ P CFLCIα,n if and only if an ` v1nβ̂n P rθ̄ ´ χn, θ̄ ` χns. Thus,

Pβ̂n„N pβ,Σnq
`

θ̄ P CFLCIα,n

˘

“ Φ

ˆ

θ̄ ` χn ´ µn
σvn,n

˙

´ Φ

ˆ

θ̄ ´ χn ´ µn
σvn,n

˙

.

Now, recalling that θub “ θmid`b̄min by construction, we have Pβ̂n„N pβ,Σnq
`

pθub ` xq P CFLCIα,n

˘

equals

Φ

ˆ

θmid ` b̄min ` x` χn ´ µn
σvn,n

˙

´ Φ

ˆ

θmid ` b̄min ` x´ χn ´ µn
σvn,n

˙

. (28)

Note that the term inside the second normal CDF in the previous display equals

´
χn ´ bn
σvn,n

`
x` θmid ´ µn ` b̄min ´ bn

σvn,n
.

However, the first summand above is bounded between ´z1´α{2 and ´z1´α by Lemma A.12.
Additionally, we’ve shown that θmid ´ µn Ñ 0 and b̄min ´ bn Ñ 0, so the numerator of the
second summand converges to x ą 0. Since the denominator σvn,n Ñ 0, the expression in the
previous display diverges to 8, and hence the second normal CDF term in (28) converges to
1, which implies that P

`

pθub ` xq P CFLCIα,n

˘

Ñ 0, as needed.
In order to prove the other direction, we proceed via the contrapositive. Towards this,

suppose Assumption 9 fails. Let L :“ LIDpδpre,∆q and L̄ :“ supδ̃preP∆pre
LIDpδ̃pre,∆q. By

Lemma A.10, bn :“ b̄pan, vnq ě
1
2
L̄ “: b̄min. As argued earlier in the proof, since α P p0, .5s,

χn ě bn ě
1
2
L̄. If L̄ “ 8, then CFLCIα,n is the real line, and thus never rejects, so CFLCIα,n

is trivially inconsistent under the assumption that Spδ ` τ,∆q ‰ R. For the remainder
of the proof, we assume L ă L̄ ă 8. From Lemma 2.1, Spδ ` τ,∆q “ rθlb, θubs, where
θub ´ θlb “ LIDpδpre,∆q “ L. Let ε “ 1

4
pL̄ ´ Lq, and set θout1 :“ θub ` ε and θout2 :“ θlb ´ ε.

Let θmid “ 1
2
pθub ` θlbq be the midpoint of the identified set. By construction, θout1 ´ θmid “

θmid´ θout2 “ 1
2
L` ε ă 1

2
L̄. Since CFLCIα,n is an interval with half-length at least 1

2
L̄, it follows

that if θmid P CFLCIα,n then at least one of θout1 , θout2 is also in CFLCIα,n . Hence, P
`

θout1 P CFLCIα,n

˘

`

P
`

θout2 P CFLCIα,n

˘

ě P
`

θmid P CFLCIα,n

˘

ě 1 ´ α, where the final bound follows since CFLCIα,n
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satisfies the coverage requirement (10). It follows that lim supnÑ8 P
`

θoutj P CFLCIα,n

˘

ě 1
2
p1´

αq ą 0 for at least one j P t1, 2u.

Lemma A.10 (Bounds for worst-case bias). For any pa, vq, b̄pa, vq ě 1
2

supδpreP∆pre
LIDpδpre,∆q.

Proof. Since β “ δ ` τ , we can write the bias of the affine estimator a ` v1β̂ as b “ a `

v1δ ` pvpost ´ lq
1τpost. Since τpost is unrestricted in the maximization in (17), we see that the

worst-case bias will be infinite if vpost ‰ l and the lemma holds trivially. We can thus restrict
attention to affine estimators with vpost “ l, in which case the worst-case bias reduces to

b̄pa, vq “ sup
δP∆

|a` v1δ| “ sup
δP∆

|a` v1preδpre ` l
1δpost|. (29)

Now, pick any δ˚pre P ∆pre. First, suppose that the minimum
`

minδ l
1δpost, s.t. δ P ∆, δpre “ δ˚pre

˘

and the maximum
`

maxδ l
1δpost, s.t. δ P ∆, δpre “ δ˚pre

˘

are finite. Let δmin and δmax be the
associated solutions. By construction, δmaxpre “ δminpre “ δ˚pre. For any vpre, we can apply the
triangle inequality to show that

ˇ

ˇa` v1preδ
max
pre ` l

1δmaxpost

ˇ

ˇ`
ˇ

ˇa` v1preδ
min
pre ` l

1δminpost

ˇ

ˇ ě
ˇ

ˇ

`

a` v1preδ
max
pre ` l

1δmaxpost

˘

´
`

a` v1preδ
min
pre ` l

1δminpost

˘
ˇ

ˇ

“ |l1δmaxpost ´ l
1δminpost | “ LIDpδ˚pre,∆q.

Note that for any x1, x2 ě 0, maxtx1, x2u ě
1
2
px1 ` x2q. It then follows from the previous

display that

maxt
ˇ

ˇa` v1preδ
max
pre ` l

1δmaxpost

ˇ

ˇ ,
ˇ

ˇa` v1preδ
min
pre ` l

1δminpost

ˇ

ˇu ě
1

2
LIDpδ˚pre,∆q.

Since δmaxpre and δminpre are feasible in the maximization (29), we see that b̄ ě 1
2
LIDpδ˚pre,∆q,

as needed. To complete the proof, now suppose without loss of generality that

´

max
δ
l1δpost, s.t. δ P ∆, δpre “ δ˚pre

¯

“ 8.

Then, we can replay the argument above replacing δmax with a sequence of values tδju such
that l1δj diverges, which gives that b̄ is infinite and the result follows.

Lemma A.11. Suppose ∆ is convex, and there exists δ P ∆ such that LIDpδpre,∆q “
supδ̃preP∆pre

LIDpδ̃pre,∆q ă 8. Then there exists pa, vq such that b̄pa, vq “ 1
2

supδ̃preP∆pre
LIDpδ̃pre,∆q.

Additionally, for any τ and Σn, Eβ̂n„N pδ`τ,Σnq
”

a` v1β̂n

ı

“ 1
2
pθub ` θlbq, where θub and θlb

are the upper and lower bounds of the identified set Spδ ` τ,∆q.

Proof. Let bmaxpδ˚preq :“
´

maxδ̃ l
1δ̃post, s.t. δ̃ P ∆, δ̃pre “ δ˚pre

¯

, where we define bmax “ ´8

if δ˚pre R ∆pre. Likewise, define bminpδ˚preq :“
´

minδ̃ l
1δ̃post, s.t. δ̃ P ∆, δ̃pre “ δ˚pre

¯

, where
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we define bmin “ 8 if δ˚pre R ∆pre. Note that ∆ convex implies that bmax is concave and
bmin is convex. Thus, ´LIDpδ˚preq “ bminpδ˚preq ´ bmaxpδ˚preq is convex (where we define
LIDpδ˚preq “ ´8 if δ˚pre R ∆pre). The domain of ´LIDpδ˚preq (i.e. the set of values for which
it is finite) is ∆pre, since it is infinite for δ˚pre R ∆pre by construction, and by assumption,
LIDpδ˚preq is finite for all δ˚pre P ∆pre. Since ∆ is assumed to be convex, ∆pre is a non-
empty convex set, and thus has non-empty relative interior, so the relative interior of the
domain of ´LID is non-empty.37 It follows from Theorem 8.2 in Mau Nam (2019) that
Bp´LIDq “ Bp´bmaxq ` Bpbminq where for a convex function f , Bf is the subdifferential
Bfpx̄q :“ tv : fpx̄q ` v1px´ x̄q ď fpxq, @xu and Bp´bmaxq ` Bpbminq is the Minkowski sum of
the two subdifferentials.

Additionally, if LIDpδpreq “ supδ̃preP∆pre
LIDpδ̃preq, then´LIDpδpreq “ inf δ̃preP∆pre

´LIDpδ̃preq.
Thus, standard results in convex analysis (see, e.g., Theorem 16.2 in Mau Nam (2019)) give
that 0 P Bp´LIDqpδpreq`Np∆; δpreq, where Np∆; δpreq “ tvpre : v1prepδ̃pre´ δpreq ď 0, @δ̃pre P

∆preu is the normal cone to ∆pre at δpre. Hence, there exist vectors v̄min, v̄max such that for
all δ̃pre P ∆pre,

bminpδpreq ` v̄
1
minpδ̃pre ´ δpreq ď bminpδ̃preq (30)

´ bmaxpδpreq ` v̄
1
maxpδ̃pre ´ δpreq ď ´b

max
pδ̃preq (31)

´ pv̄min ` v̄maxq
1
pδ̃pre ´ δpreq ď 0. (32)

The inequalities (31) and (32) together imply that for all δ̃pre P ∆pre,

bmaxpδpreq ` v̄
1
minpδ̃pre ´ δpreq ě bmaxpδ̃preq. (33)

Now, let v be the vector such that vpost “ l and vpre “ ´v̄min. Observe that

max
δ̃P∆

a` v1preδ̃pre ` l
1δ̃post “ max

δ̃preP∆pre

ˆ

a` v1preδ̃pre ` max
δ̄P∆,δ̄pre“δ̃pre

l1δ̄post

˙

“ max
δ̃preP∆pre

a` v1preδ̃pre ` b
max
pδ̃preq

ď a` v1preδpre ` b
max
pδpreq, (34)

where the first equality nests the maximization, the second equality uses the definition of
37The relative interior of a set is the interior of the set relative to its affine hull. See, e.g., Mau Nam

(2019), Chapter 5.
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bmax, and the inequality follows from (33). An analogous argument using (30) yields that

min
δ̃P∆

a` v1preδ̃pre ` l
1δ̃post “ min

δ̃preP∆pre

a` v1preδ̃pre ` b
min
pδ̃preq

ě a` v1preδpre ` b
min
pδpreq. (35)

Now, it is apparent from equation (29) that

b̄pa, vq “ max

"
ˇ

ˇ

ˇ

ˇ

max
δ̃P∆

a` v1preδ̃pre ` l
1δ̃post

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

min
δ̃P∆

a` v1preδ̃pre ` l
1δ̃post

ˇ

ˇ

ˇ

ˇ

*

, (36)

which is bounded above by max
 

a` v1preδpre ` b
maxpδpreq,´pa` v

1
preδpre ` b

minpδpreq
˘

u from
the results above. Setting a “ ´v1preδpre ´

1
2
pbmaxpδpreq ` bminpδpreqq, this upper bound

reduces to 1
2
pbmaxpδpreq ´ bminpδpreqq. Since LIDpδpre,∆q “ bmaxpδpreq ´ bminpδpreq and

LIDpδpre,∆q “ supδ̃preP∆pre
LIDpδ̃pre,∆q by assumption, it is then immediate that b̄ ď

1
2

supδ̃preP∆pre
LIDpδ̃pre,∆q. The inequality in the opposite direction follows from Lemma

A.10. Finally, substituting in the definition of a and v above and simplifying, we see that
Eβ̂n„N pδ`τ,Σnq

”

a` v1β̂n

ı

“ l1βpost´
1
2
pbmaxpδpreq ` b

minpδpreqq, which from (5) and (6) we see
is the midpoint of the identified set.

Lemma A.12. Let χα be the 1´ α quantile of the |N pb, σ2q | distribution for b ě 0. Then
b` σz1´α ď χα ď b` σz1´α{2.

Proof. Since |ξ| ě ξ, we have that q1´αp|ξ| | ξ „ N pb, σ2qq ě q1´αpξ | ξ „ N pb, σ2qq “

b` σz1´α, which yields the first inequality. For the second inequality, observe that

q1´αp|ξ| | ξ „ N
`

b, σ2
˘

q “ q1´αp|ξ ` b| | ξ „ N
`

0, σ2
˘

q

ď b` q1´αp|ξ| | ξ „ N
`

0, σ2
˘

q “ b` σz1´α{2

where the first inequality uses the triangle inequality, and the final equality uses the fact
that a mean-zero normal distribution is symmetric about 0.

B Additional Simulation Results

This section contains additional simulation results that complement the simulations pre-
sented in the main text. Section B.1 describes the computation of the optimal bound for ex-
pected excess length. Section B.2 contains additional results from the normal data-generating
process considered in the main text. Section B.3 presents results from a non-normal data-
generating process in which the covariance matrix is estimated from the data, which show
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that our proposed procedures have (approximate) size control, with similar power curves to
those in the normal simulations.

B.1 Optimal bounds on excess length

We now discuss the computation of optimal bounds on the excess length of confidence in-
tervals that satisfy the uniform coverage requirement (10). In Section 5, we benchmark the
performance of our proposed procedures in Monte Carlo simulations relative to these bounds.

The following result restates Theorem 3.2 of Armstrong and Kolesár (2018) in the nota-
tion of our paper, which provides a formula for the optimal expected length of a confidence
set that satisfies the uniform coverage requirement.

Lemma B.1. Suppose that ∆ is convex. Let Iα denote the set of confidence sets that satisfy
the coverage requirement (10). Then, for any δ˚ P ∆, τ˚post P RT̄ , and Σn positive definite,

inf
CPIα

Eβ̂n„N pδ˚`Lpostτ˚,Σnq rλpCqs “ p1´ αqE rω̄pz1´α ´ Zq ´
¯
ωpz1´α ´ Zq |Z ă z1´αs ,

where Z „ N p0, 1q, z1´α is the 1´ α quantile of Z, and

ω̄pbq :“ suptl1τ | τ P RT̄ , Dδ P ∆ s.t. }δ ` Lpostτ ´ β˚}2Σn ď b2
u

¯
ωpbq :“ inftl1τ | τ P RT̄ , Dδ P ∆ s.t. }δ ` Lpostτ ´ β˚}2Σn ď b2

u,

for β˚ :“ δ˚ ` Lpostτ
˚
post, and ||x||Σ “ x1Σ´1x.

The proof of this result follows from observing that the confidence set that optimally
directs power against pδ˚, τ˚postq inverts Neyman-Pearson tests of H0 : δ P ∆, θ “ θ̄ against
HA : pδ, τpostq “ pδ˚, τ˚postq for each value θ̄. The formulas above are then obtained by
integrating one minus the power function of these tests over θ̄. By the same argument, the
optimal excess length for confidence sets that control size is the integral of one minus the
power function over all points θ̄ outside of the identified set. Additionally, for any value
θ̄ P Spβ,∆q, the null and alternative hypotheses are observationally equivalent, and so the
most powerful test trivially has size α. It follows that the lowest achievable expected excess
length is p1´αq ¨LIDpδ˚pre,∆q shorter than the lowest achievable expected length, where as
in Section 4, LID denotes the length of the identified set.

Corollary B.1. Under the conditions of Lemma B.1,

inf
CPIα

Eβ̂n„N pβ˚,Σnq rELpC; β
˚
qs “ inf

CPIα
Eβ̂n„N pβ˚,Σnq rλpCqs ´ p1´ αqLIDpβ

˚,∆q,
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where ELpC; βq “ λpCzSpβ,∆qq is the excess length of the confidence set C, i.e. the length
of the part of the confidence set that falls outside of the identified set.

Recall that when ∆ is the union of polyhedra (∆ “
ŤK
k“1 ∆k), the identified set is the

union of the identified sets for each of the ∆k. Thus, any Cα that satisfies (10) for ∆ must
also satisfy (10) for each ∆k. It follows that the expected excess length for C is bounded
below by the optimal excess length for confidence sets satisfying (10) for ∆k for each k.
For ∆s that are unions of polyhedra, we therefore use the largest lower bound implied by
the individual ∆k, which is a potentially non-sharp lower bound on the excess length of a
procedure that satisfies (10) for ∆.

B.2 Additional Results for Normal Simulations

In the main text, we report efficiency in terms of excess length for the parameter θ “ τ1

for ∆SDpMq, ∆SDPBpMq, ∆SDRMpM̄q and ∆RMpM̄q. In this section, we provide additional
simulation results.

Alternative choices of M̄ for ∆SDRMpM̄q and ∆RMpM̄q. The main text reports effi-
ciency in terms of excess length over ∆SDRMpM̄q and ∆RMpM̄q for M̄ “ 1. We now report
additional results for M̄ “ 1, 2, 3. The results are qualitatively similarly, suggesting that
the choice of M̄ does not appear to have a large effect on the performance of our proposed
procedures.

Alternative choice of target parameter. The main text reports efficiency in terms of
excess length for the parameter θ “ τ1. We now report additional results using the average
of post-period treatment effects, θ “ τ̄post, as the target parameter.

Figure I2 plots the efficiency results for θ “ τ̄post over ∆SDpMq and ∆SDPBpMq. As in
the main text, we conduct these simulations under the assumption of parallel trends and
zero treatment effects (i.e., β “ 0), reporting results as M{σ1 varies.

Figure I3 plots the efficiency results for θ “ τ̄post over ∆SDRMpM̄q and ∆RMpM̄q. As in
the main text, we conduct these simulations under the assumption of zero treatment effects
and a “pulse” pre-trend (i.e., β´1 “ δ´1 and βt “ 0 for all t ‰ ´1), reporting results for
M̄ “ 1 over δ´1{σ1 “ 0, 1, 2, 3.38

38We note that over ∆SDRM pM̄q the median efficiency ratio for our proposed confidence sets is larger than
one for M̄ “ 3. For M̄ “ 3, the length of the identified set for θ “ τ̄post can be quite large when there are
many post-treatment periods (e.g., as mentioned in the main text, 5 papers in the survey have T̄ ą 10), and
so this behavior occurs due to computational constraints on the grid size for the underlying test inversion.
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Figure I1: ∆SDRMpM̄q and ∆RMpM̄q: Median efficiency ratios for proposed procedures when
θ “ τ1 as M̄ varies.

Note: This figure shows the median efficiency ratio for our proposed confidence sets for θ “ τ1 over
∆SDRM pM̄q, ∆RM pM̄q and M̄ “ 1, 2, 3. The efficiency ratio for a procedure is defined as the excess length
bound divided by the procedure’s expected excess length. The results for M̄ “ 1 are plotted in red, M̄ “ 2
are plotted in blue, and M̄ “ 3 are plotted in green. The results for the conditional-least favorable hybrid
confidence set (“C-LF Hybrid”) are plotted in the solid line with circles. The results for the conditional
confidence set are plotted in the dashed line with triangles. Results are averaged over 1000 simulations for
each of the 12 papers surveyed, and the median across papers is reported here.

Figure I2: Median efficiency ratios for ∆SDpMq and ∆SDPBpMq when θ “ τ̄post.

Note: This figure shows the median efficiency ratios for our proposed confidence sets for ∆SDpMq and
∆SDPBpMq when θ “ τ̄post. The efficiency ratio for a procedure is defined as the optimal bound divided
by the procedure’s expected excess length. The results for the FLCI are plotted in purple, the results for
the conditional-LF (“C-LF Hybrid”) in blue, and the results for the conditional confidence set are in green.
Results are averaged over 1000 simulations for each of the 12 papers surveyed, and the median across papers
is reported here.
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Figure I3: Median efficiency ratios for ∆SDRMpM̄q and ∆RMpM̄q when θ “ τ̄post.

Note: This figure shows the median efficiency ratios for our proposed confidence sets for ∆SDRM pM̄q and
∆RM pM̄q when θ “ τ̄post and M̄ “ 1. The efficiency ratio for a procedure is defined as the optimal bound
divided by the procedure’s expected excess length. The results for the conditional-least favorable (“C-LF”)
hybrid in blue and the results for the conditional confidence set in green. Results are averaged over 1000
simulations for each of the 12 papers surveyed, and the median across papers is reported here.
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B.3 Non-normal simulation results with estimated covariance ma-

trix

In the main text, we presented simulations results where β̂ is normally distributed and its
covariance matrix is treated as known. In this section, we present Monte Carlo results using
a data-generating process in which β̂ is not normally distributed and the covariance matrix
is estimated from the data. Specifically, we consider simulations based on the empirical
distribution in Bailey and Goodman-Bacon (2015). We find that all of our procedures achieve
(approximate) size control, and our results on the relative power of the various procedures
are quite similar to those presented in the main text.

B.3.1 Simulation design

The simulations are calibrated using the empirical distribution of the data in Bailey and
Goodman-Bacon (2015).39 Let β̂, Σ̂ denote the original, estimated event-study coefficients
and variance-covariance matrix from the event-study regression in the paper. We simulate
data using a clustered bootstrap sampling scheme at the county level (i.e. the level of
clustering used by the authors in their event-study regression). For each bootstrap sample
b, we re-estimate the event-study coefficients β̂b and the variance-covariance matrix Σ̂b also
using the clustering scheme specified by the authors. We then re-center the bootstrapped
coefficient so that under our simulated data-generating process either parallel trends holds
(i.e., β̂centeredb “ β̂b´ β̂) or the “pulse” pre-trend holds (i.e., β̂centeredb “ β̂b´ β̂`δ´1 ˚e´1 where
e´1 is the (

¯
T ` T̄ )-dimensional vector with one in t “ ´1 entry and zeroes everywhere else).

We construct our proposed confidence sets for bootstrap draw b using the pair pβ̂centeredb , Σ̂bq.
As in the main text, we focus on the performance of our proposed confidence sets for

∆SDpMq, ∆SDPBpMq under parallel trends and ∆SDRMpM̄q, ∆RMpM̄q under the “pulse”
pre-trend. The parameter of interest in these simulations is the causal effect in the first post-
period (θ “ τ1). For ∆SDpMq and ∆SDPBpMq, we report the performance of the FLCI, con-
ditional confidence set, and conditional-least favorable confidence set. For ∆SDRMpM̄q and
∆RMpM̄q, we report the performance of the conditional confidence set and the conditional-
least favorable confidence set. All results are averaged over 1000 bootstrap samples.

39Since implementing the bootstrap in practice is logistically challenging, we do so for one paper rather
than the full 12 papers in the survey. We chose the first paper alphabetically to minimize concerns about
cherry-picking.
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B.3.2 Size control simulations

Table 2 reports the maximum rejection rate of each procedure over a grid of parameter values
θ within the identified set Spβ,∆q for ∆ “ ∆SDpMq and ∆ “ ∆SDPBpMq under parallel
trends (i.e., β “ 0). We report results for M{σ1 “ 0, 1, 2, 3, 4, 5. The table shows that all
our procedures approximately control size, with null rejection rates not exceeding 0.08.

∆ M{σ1 Conditional FLCI C-LF Hybrid
∆SDpMq

0 0.073 0.078 0.069
1 0.046 0.061 0.044
2 0.038 0.072 0.037
3 0.040 0.072 0.038
4 0.049 0.072 0.045
5 0.059 0.072 0.051

∆SDPBpMq
0 0.079 0.078 0.074
1 0.052 0.047 0.048
2 0.046 0.055 0.042
3 0.051 0.058 0.046
4 0.055 0.058 0.051
5 0.059 0.058 0.057

Table 2: Maximum null rejection probability over the identified set Spβ,∆q for ∆ “ ∆SDpMq
and ∆ “ ∆SDPBpMq under parallel trends (i.e., β “ 0) using the empirical distribution from
Bailey and Goodman-Bacon (2015).

Table 3 reports the maximum rejection rate of the conditional test and the conditional-
least favorable test over a grid of parameter values θ within the identified set Spβ,∆q for
∆ “ ∆SDRMpM̄q and ∆ “ ∆RMpM̄q under the “pulse” pre-trend (i.e., β´1 “ δ´1 and βt “ 0

for all t ‰ ´1). We report results for M̄ “ 1 and δ´1{σ1 “ 1, 2, 3. The table shows that
all our procedures approximately control size, with worst-case null rejection probability of
0.058.

B.3.3 Comparison with normal simulations

We next compare results from the non-normal simulations with estimated covariance dis-
cussed above to the normal model simulations the main text, in which β̂ is normal and Σ is
treated as known.

Figures I4-I5 shows the rejection probabilities at different values of the parameter θ using
both simulation methods for ∆SDpMq, ∆SDPBpMq at M{σ1 “ 0, 5 respectively. The results
are quite similar for all values ofM{σ1 considered, and we thus omit the intermediate values.
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∆ δ´1{σ1 Conditional C-LF Hybrid
∆SDRMpM̄q

1 0.009 0.008
2 0.037 0.035
3 0.058 0.054

∆RMpM̄q
1 0.005 0.005
2 0.017 0.016
3 0.024 0.023

Table 3: Maximum null rejection probability over the identified set Spβ,∆q for ∆ “

∆SDRMpM̄q and ∆ “ ∆RMpM̄q under the “pulse” pre-trend (i.e., β´1 “ δ´1 and βt “ 0
for all t ‰ ´1) and M̄ “ 1 using the empirical distribution from Bailey and Goodman-Bacon
(2015). We report results for δ´1{σ1 “ 1, 2, 3.

The estimated average rejection rates of each procedure are quite similar in the non-normal
simulations and the normal simulations across each choice of ∆. As a result, the relative
rankings of the procedures in terms of power are the same in the non-normal simulations
as in the normal simulations discussed in the main text. Similarly, Figures I6-I7 shows the
rejection probabilities at different values of the parameter θ using both simulation methods
for ∆SDRMpM̄q, ∆RMpM̄q at δ´1{σ1 “ 1, 2, 3 respectively and M̄ “ 1.
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Figure I4: Comparison of rejection probabilities using bootstrap and normal simulations.
Results are shown for θ “ τ1, and each choice of ∆ “ ∆SDpMq,∆SDPBpMq, and M{σ1 “ 0.
The average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure I5: Comparison of rejection probabilities using bootstrap and normal simulations.
Results are shown for θ “ τ1, and each choice of ∆ “ ∆SDpMq,∆SDPBpMq, and M{σ1 “ 5.
The average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.

A-28



Figure I6: Comparison of rejection probabilities using bootstrap and normal simulations for
∆SDRMpM̄q and ∆RMpM̄q. Results are shown for θ “ τ1, M̄ “ 1 and δ´1{σ1 “ 1. The
average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure I7: Comparison of rejection probabilities using bootstrap and normal simulations for
∆SDRMpM̄q and ∆RMpM̄q. Results are shown for θ “ τ1, M̄ “ 1 and δ´1{σ1 “ 3. The
average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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