An Economic Approach to Regulating Algorithms

Ashesh Rambachan, Jon Kleinberg, Jens Ludwig & Sendhil Mullainathan

November 3, 2020
Motivation

- Algorithms are increasingly used in a wide variety of important domains.
- **Criminal justice**: Should a defendant be granted bail?
- **Medicine**: Should a patient be tested?
- **Hiring**: Should an applicant be hired?
- **Finance**: Should an applicant receive a loan?
- Widespread fears that algorithmic decision-making may reflect or worsen existing socioeconomic disparities.
Algorithmic Fairness: Perspective from Computer Science

- An algorithm produces a prediction function \(\hat{f} \), which predicts label \(Y^* \) from features \(W \).

 \[\Rightarrow \] Define what it means for \(\hat{f} \) to be fair.

 \[\Rightarrow \] Take chosen def’n of “fair prediction function” as primitive.

- Constructing fair algorithms reduces to introducing an additional constraint in our training procedures:

\[
\min_{f} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(Y^*_i, W_i; f) \quad \text{s.t.} \quad f \text{ is “fair.”}
\]

- Enormously influential literature: Dwork et al. (2012), Zemel et al. (2013), Hardt et al. (2016) and many, many others.
This Paper: An Economic Approach

- Embed concerns about algorithmic bias within a social welfare function.
 - Defined over outcomes generated by decisions.
 - Captures explicit preference for efficiency and equity.

- Explicit equity preference in SWF generates concern about possible algorithmic bias.

- Our Approach: begin w/ SWF and derive implications of equity preferences for algorithm construction.
 - Analogy to optimal tax: derive properties of tax system, taking SWF as primitive.
Our Approach: Cast questions surrounding design/use of algorithms and algorithmic fairness into canonical welfare economics framework.

Welfare economics framework highlights two distinct problem formulations.

First-Best Problem: Benevolent “social planner” has full control over design/use of algorithmic decision rule.
 - Statistical decision theory

Second-Best Problem: Third-party DMs control design/use of algorithmic decision rule, and do not share same objectives as society.
 - What are DMs maximizing? What information do they have? What information does the social planner have about DMs? What policy tools are available?
 - Contracting problem, Mechanism design
Our Approach: Cast questions surrounding design/use of algorithms and algorithmic fairness into canonical welfare economics framework.

Big Picture Goal: Provide framework for economists to think about algorithmic fairness, and thereby fruitfully collaborate w/ computer science community.

- Richer analyses of second-best/regulation problem requires tractable modelling of both statistical and economic aspects of the problem.
Screening decisions

Screening Decisions: Individuals screened into program based on prediction of unknown outcome of interest \(Y^* \in \{0, 1\} \)
- Common example of “prediction policy problem” (Kleinberg et al., 2015, 2018a)

Examples include pre-trial release, hiring decisions, credit approvals and more.

Population of individuals described by characteristics \(W \in \{0, 1\}^J \) and group membership \(G \in \{0, 1\} \).
- \(G = 1 \) for “protected group.”
- \(P(g, w) = \mathbb{P}\{G = g, W = w\} \), \(\theta^*(g, w) = \mathbb{E}[Y^* | G = g, W = w] \).

Predict \(Y^* \) given observed features \((G, W)\) and admit individuals based upon predictions.
What algorithm would social planner use?

- Consider social planner that constructs algorithm and selects admissions rule in the screening decision.
 - Equivalently: Benevolent private actor that shares society’s goals.

- This is the **first-best problem**. Analyze first-best to understand how equity preferences affect screening decisions.

- **Questions**: What algorithm would social planner construct? What admissions rule would social planner select?
The social welfare function

- Weighted average of expected outcome of interest among admitted individuals:

\[\sum_{g,w} \psi_g \theta^*(g, w) t(g, w) P(g, w), \]

- Admissions rule \(t(g, w) \in [0, 1] \)
- Generalized social welfare weights, \(\psi_g \geq 0 \).

- SWF captures preference for both **efficiency** and **equity**
 - Efficiency: maximize expected outcome of interest among admitted group
 - Equity: value outcomes associated w/ protected group more, \(\psi_1 > \psi_0 \).

- Social planner does not know \(\theta^*(g, w) \) \(\implies \) faces non-trivial *prediction policy* problem.
Measured outcomes and the training dataset

- Social planner receives access to **training dataset** to construct predictions.
 - Training dataset D_N consists of N i.i.d. random draws from population.

- Each individual additionally described by **measured outcome** \tilde{Y}.
 - May differ from true outcome of interest Y^*.

- Training dataset useful provided measured outcome \tilde{Y} informative about outcome of interest Y^*.
 - Specifies **prior beliefs** $\pi(\cdot)$ over $(Y^*, \tilde{Y})|G, W$.
 - Knows marginal dist (G, W).
The first-best screening problem

- Social planner faces known **capacity constraint** $C \in [0, 1]$. May not admit more than fraction C of population into program.

- **First-best problem**: Maximize expected social welfare subject to capacity constraint

$$\max_{t(g, w; D_N)} \mathbb{E}_\pi \left[\sum_{(g, w)} \psi_g \theta^*(g, w) t(g, w; D_N) P(g, w) \right]$$

s.t. $\sum_{(g, w)} t(g, w; D_N) P(g, w) \leq C$ w/ probability one.

Solution is **first-best admissions rule**.
Proposition: First-best admissions rule is *threshold rule* w/ group-specific admissions thresholds

\[1 \left\{ \mathbb{E}_{\pi|D_N} [Y^* | G = g, W = w] > \tau^*(g; C) \right\}, \]

w/ ties handled s.t. capacity constraint binds.
First-best admissions rule

- **Proposition**: First-best admissions rule is *threshold rule* w/ group-specific admissions thresholds

\[
1 \left\{ \mathbb{E}_{\pi|D_N} [Y^* | G = g, W = w] > \tau^*(g; C) \right\},
\]

w/ ties handled s.t. capacity constraint binds.

- Social planner uses all available info in training data + prior to construct rank-ordering of population.
 - **Intuition**: Provided data informative about outcome, social planner “uses” data to update prior beliefs.
 - **Intuition**: Construct optimal prediction of measured outcome \(\tilde{Y} \). Use prior beliefs \(\pi \) to map into predictions of outcome of interest \(Y^* \).
First-best admissions rule

Proposition: First-best admissions rule is *threshold rule* w/ group-specific admissions thresholds

\[1 \{ \mathbb{E}_{\pi|D_N} [Y^* | G = g, W = w] > \tau^*(g; C) \}, \]

w/ ties handled s.t. capacity constraint binds.

Takeaways: Deliver best estimate of \(\mathbb{E}[\tilde{Y} | W, G] \).

1. Do not blind algorithm to group membership \(G \).
2. Do not remove any characteristics \(W \).
3. Do not place additional constraints in training procedure.

Equity preferences modify admissions rule, not prediction function.
First-best admissions rule

- **Proposition**: First-best admissions rule is *threshold rule* w/ group-specific admissions thresholds

\[
1 \left\{ \mathbb{E}_{\pi|D_N} [Y^* | G = g, W = w] > \tau^*(g; C) \right\},
\]

w/ ties handled s.t. capacity constraint binds.

- **Empirical Question**: Is it really reasonable to assume social planner able to specify full prior over conditional joint distribution \((Y^*, \tilde{Y}) | W, X)\?

- **Modelling Question**: Model assumes social planner is fully Bayesian; what if instead she is ambiguity-averse (i.e., \(\Gamma\)-minimax)?
 - Are there decision-theoretic justifications for fairness criteria?
How would social planner regulate decision-makers?

- **In many applications**: third-party firms control construction of prediction function and admissions rule
 - Examples: resume screening, credit approvals.
 Some firms may wish to discriminate against protected group.

- This is a **regulation problem**.
 - Social planner interacts w/ third-party DM. Takes their screening decisions as given.
 - Limited policy instruments to influence DM’s choices.

- **Next**: extend model to analyze second-best problem.
How would social planner regulate decision-makers?

- **In many applications**: third-party firms control construction of prediction function and admissions rule
 - **Examples**: resume screening, credit approvals.
 Some firms may wish to discriminate against protected group.

- **This is a regulation problem**.
 - Social planner interacts w/ third-party DM. Takes their screening decisions as given.
 - Limited policy instruments to influence DM’s choices.

- **Bigger Picture**: Exciting area w/ room for fruitful collaborations b/w economics and computer science.
 - How to tractably incorporate *both* richer statistics *and* richer economics into the model?
How would social planner regulate decision-makers?

- Social planner oversees market of human DMs and each faces own screening decision.

- Two constraints:
 1. **Policy constraint**: May only enforce *model regulations* – restrict which W can be used in admissions rules.
 2. **Information constraint**: Does not know which human DMs are discriminatory and knows less about which W have signal for predicting Y^*.

- Two sets of results:
 1. Model captures existing intuitions about regulating discrimination – e.g., disparate treatment and disparate impact.
 2. Analyze how algorithmic decision-making changes this regulation problem.
Market of human decision-makers

- Human DM’s preferences $\lambda = (\lambda_0, \lambda_1)$ governs payoffs

$$U(t; \lambda) = \sum_{(g, w)} \lambda_g \theta^*(g, w) t(g, w) P(g, w),$$

Specifies relative weights placed on outcomes associated with each group.

- Only two types of preferences in the market:
 1. **Non-discriminatory** preferences w/ $\lambda_0 = \lambda_1 = 1$,
 2. **Discriminatory** preferences w/ $\bar{\lambda}_0 = 1 > \bar{\lambda}_1$

- Discriminatory firms are **taste-based discriminators** in the spirit of Becker (1957).
 - How to incorporate richer models of discriminatory behavior? E.g., stereotypes as in Bordalo et al. (2016)
Market of human decision-makers

- Human DMs prior beliefs π_m describe beliefs about which W are relevant in predicting Y^*.

- Each prior π_m assoc. w/ model $m \subseteq \{1, \ldots, J\}$.
 - Only characteristics in model m contain signal for predicting outcome of interest Y^*.

- Assume each prior π_m additionally satisfies:
 1. **Sufficiency**: No average group differences in Y^* conditional on characteristics in model m.
 2. **Relevance**: All characteristics in model m contain signal on average for Y^*.
Market of human decision-makers

- Each human DM faces **capacity constraint** $C \in [0, 1]$. May not admit more than fraction C of population into program.

- Market of human DMs characterized by joint dist’n $\eta(\lambda, \pi_m, C)$.
 - Full support and assume capacity constraint is independent of preferences and beliefs under η.

- Selects admissions rule to maximize expected payoffs subject to capacity constraint. Optimal admissions rule is **threshold rule**.
 - Thresholds depend on preferences λ.
The social welfare function

- For single screening problem, SWF defined as before.

- Assume preferences are **aligned** w/ non-discriminatory human DMs.
 - Social planner’s preferred rank-ordering is same non-discriminator’s preferred rank-ordering w/ \((\psi_0, \psi_1) = (1, 1)\).

- Social planner only knows joint dist’n \(\eta\) of \((\lambda, \pi_m, C)\). Payoffs across market summarized by **aggregate social welfare function**

\[
\int_C \left(\sum_{(g, w)} \mathbb{E}_{\eta} \left[\theta_{\pi_m}^*(w) t(g, w) \right] P(g, w) \right) h(C) dC.
\]
Model regulations

- Only policy instrument available is **model regulations**.
 - Social planner may regulate what characteristics can be used in admissions rules.

- Banning characteristics \implies select rank-ordering more closely matches social planner’s preferred rank-ordering.
 - At model controls m, must pool across all characteristics outside of model m.
 - If group membership banned, further pool across groups.

Are model regulations actually enforceable?

- **Interpretation**: admissions rules are directly observable.
- **Counterpoint**: For human decision-makers, admissions rules are mechanically unobservable!
Model regulations

- Only policy instrument available is **model regulations**.
 - Social planner may regulate what characteristics can be used in admissions rules.

- Banning characteristics \implies select rank-ordering more closely matches social planner’s preferred rank-ordering.
 - At model controls m, must pool across all characteristics outside of model m.
 - If group membership banned, further pool across groups.

- Are model regulations actually enforceable?
 - **Interpretation**: admissions rules are directly observable.
 - **Counterpoint**: For human decision-makers, admissions rules are mechanically unobservable!
Model regulation in practice

- Social planner can enforce model regulations \implies social planner directly observes admissions rules $t(g, w)$

- **In practice**: social planner faces additional inference problem in regulating discrimination.
 - Must infer admissions rules from finitely many admissions decisions.
Model regulation in practice

- Social planner can enforce model regulations \implies social planner directly observes admissions rules $t(g, w)$

- Inferring whether admissions rule uses group membership \iff testing whether admissions decisions are conditionally independent of group membership.

- Conditional independence testing is a **hard** statistical problem.
 - For discrete distributions, hardness grows with dimensionality.
 Canonne et al. (2018): Tests with good size/power properties require number of samples to grow exponentially in dimensionality of observable characteristics.

- How to incorporate statistical problems into framework of optimal model regulation?
The social planner’s second-best problem

- **Second-best problem**: Select model regulations to max aggregate social welfare, taking admissions rules chosen by human DMs as given

\[
\arg \max_{m \subseteq \{1, \ldots, J\}} \int_C \left(\sum_{(g, w)} \psi_g \mathbb{E}_{\eta} \left[\theta^*_{\pi \tilde{m}}(w) t^{\tilde{m}}_{\lambda, C}(g, w; m) P(g, w) \right] \right) h(C) dC.
\]

- Social planner searches over model controls to find regulations that induce rank-ordering most closely aligned w/ social planner’s first-best rank-ordering.

- Optimal model regulations may be quite complex.
 - Depends on fractions of discriminators vs. non-discriminators as well as dist’n of beliefs π_m
Flexibility tradeoff in model regulations

- Non-discriminators only use characteristics in admissions rule if they are predictive of the outcome Y^*

- Discriminators additionally may use characteristics to screen out disadvantaged group.

Flexibility tradeoff: Letting human DMs use additional characteristic leads to two effects

 1. Improves rank-orderings of population
 2. Used by some discriminators to screen out disadvantaged group

- Optimal model regulations involve **disparate impact tests**.
 - Does this variable provide sufficient predictive power for Y^* across market relative to its predictive power of group membership G?
Algorithmic Decision-Making and Second-Best Model Regulations

- Considered social planner’s second-best problem when faced w/ market of human DMs.

- **Now**: introduce **algorithmic decision-making**. How does it change second-best model regulations?
 - Model algorithms as revealing *ground truth* $\theta^*(g, w)$ in each screening problem.
 - **Ground-truth model m**
 - **Assumption**: Firms cannot manipulate ground-truth model.

- Depends on **disclosure regime**: what must human DMs disclose about their algorithms?
 1. Only admissions rules $t(g, w)$.
 2. Both admissions rule and all model inputs (training data, training procedures, etc.).
Second-best model regulations with known admissions rules

- **First disclosure regime**: only disclose admissions rule to social planner.

- **Result**: Nothing fundamentally changes! Social planner still faces flexibility tradeoff.
 - **Intuition**: social planner still faces asymmetric information over both ground-truth model and preferences.

- **In practice**: Algorithmic decision-making forces human DMs to specify an admissions rule.
 - No longer need to infer admissions rule from finitely many admissions decisions (Kleinberg et al., 2018b).
 - Optimal regulation of admissions rules is now *feasible*.
Algorithmic decision-making introduces new policy tool – **algorithmic audits**

- Refers to access of underlying training data and training procedures used to construct algorithm (Kleinberg et al., 2018b).

Algorithmic audits reveal ground-truth model θ^*_m of each human decision-maker.

- Eliminate one dimension of private information.

Social planner may condition model regulations on ground-truth model.

$$
\arg\max_{\tilde{m} \subseteq \{1, \ldots, J\}} \int_{C} \left(\sum_{(g, w)} \psi_g \mathbb{E}_{\lambda|m} \left[\theta^*_m(w) t^m_{\lambda, C}(g, w; \tilde{m}) P(g, w) \right] \right) h(C) dC.
$$

Algorithmic second-best problem.
Second-best model regulations with algorithmic audits

- **Proposition**: Social planner allows human DMs to use any characteristics predictive of Y^* at revealed ground-truth model.

- Social planner knows ground-truth model \implies understand *why* a characteristic is included in admissions rule.
 - If characteristic used in admissions rule but not predictive of Y^*, then must be to screen out disadvantaged group!

- Requires presence of **algorithmic audits**.
Conclusion

- **This paper**: Developed economic model of screening decisions and embedding concerns about algorithmic bias within a social welfare function.

- **First-best problem**: social planner constructs prediction function and selects admissions rule.
 - *Equity irrelevance result*: equity preferences alter admissions rule, not prediction function.

- **Second-best/regulation problem**: possibly discriminatory human DMs construct prediction function and admissions rule.
 - *Algorithmic audits*: optimal to let human DMs use any characteristics that are predictive of the outcome of interest.
Conclusion

- This paper: Developed economic model of screening decisions and embedding concerns about algorithmic bias within a social welfare function.

- Optimal regulation of algorithmic decision rules is a ripe area for research and policy.
 - Analysis of the algorithmic regulation problem is area for fruitful collaboration b/w economics and computer science.
 - Several dimensions along which to enrich both the statistics and the economics of the model.
Interpreting the first-best admissions rule

- Training data **ignored** if
 \[\mathbb{E}_{\pi|D_N}\theta^*(g, w) = \mathbb{E}_{\pi}\theta^*(g, w) \]
 for all \((g, w) \in \{0, 1\}^{J+1}\) and training datasets \(D_n\) that occur \(w/\) pos. probability.

- **Proposition**: social planner ignores \(D_N\) iff “\(Y^* \perp \tilde{Y} | W, G\)” under her prior beliefs \(\pi\).
 - Application of results in Poirier (1998) on Bayesian inference in partially identified models.

- If \(\tilde{Y}\) related to \(Y^*\) in **any way** under prior beliefs, then \(D_N\) is useful in screening decisions!
 - \(\tilde{Y}\) is mis-measured, negatively correlated \(w/\) \(Y^*\), positively correlated \(w/\) \(Y^*\) or biased against protected group!
Interpreting the first-best admissions rule

- **Another interpretation**: Construct optimal prediction of measured outcome \tilde{Y} and then use prior beliefs π to map into predictions of outcome of interest Y^*.
 - Extend results in Moon and Schorfheide (2012) to formalize statement.

- **Notation**: Let $\pi(\theta^*|\tilde{\theta})$ denote social planner’s conditional beliefs about θ^* given $\tilde{\theta}$.

- **Proposition**: Suppose \hat{f}_N is a consistent prediction function for $\mathbb{E}[\tilde{Y} | G, W]$.

 Social planner’s plug-in posterior beliefs $\pi(\theta^*|\hat{f}_N)$ asymp. approx. social planner’s true posterior beliefs $\pi(\theta^*|D_N)$

 $$d_{TV}\left(\pi(\theta^*|D_n), \pi(\theta^*|\hat{f}_N)\right) \xrightarrow{p} 0 \text{ as } N \to \infty.$$
Human decision-makers: prior beliefs

- **Formal**: Joint dist’n over parameters \(\{\theta^*(g, w) : (g, w) \in \{0, 1\}^{J+1}\} \) satisfying

\[
\mathbb{E}_{\pi_m}[\theta^*(g, w_m, w_{-m})] = \mathbb{E}_{\pi_m}[\theta^*(g, w_m, w'_{-m})]
\]

for all \(g \in \{0, 1\}, w_m \in \{0, 1\}^{|m|}, w_{-m}, w'_{-m} \in \{0, 1\}^{J-|m|}. \)

- **Sufficiency**: At \(m \subseteq \{1, \ldots, J\} \) and associated beliefs \(\pi_m \),

\[
\theta^*_{\pi_m}(0, w_m) = \theta^*_{\pi_m}(1, w_m) \quad \forall \ w_m \in \{0, 1\}^{|m|}.
\]

- **Relevance**: At \(m \subseteq \{1, \ldots, J\} \) and associated beliefs \(\pi_m \),

\[
\theta^*_{\pi_m}(g, w_m) \neq \theta^*_{\pi_m}(g, w'_m) \quad w_m, w'_m \in \{0, 1\}^{|m|} \ w_m \neq w'_m.
\]
Model regulations

- **Model regulations**: Social planner may regulate what characteristics can be used in the human DMs’ admissions rules.

- If social planner implements **model regulations** m, then all admissions rules must satisfy

 \[t(g, w_m, w_{-m}) = t(g, w_m, w'_{-m}) \]

 for all $g \in \{0, 1\}$, $w_m \in \{0, 1\}^{\lvert m \rvert}$ and $w_{-m}, w'_{-m} \in \{0, 1\}^{J-\lvert m \rvert}$.

- If group membership banned, then admissions rules must satisfy

 \[t(g, w_m, w_{-m}) = t(g', w_m, w'_{-m}) \], for all g, g'.
Disadvantage condition

- **Disadvantage condition**: characteristics associated w/ lower avg. values of Y^* more likely to occur among protected group.

- At each beliefs π_m, if w, w' are s.t. $\theta^*_{\pi_m}(w) \geq \theta^*_{\pi_m}(w')$, then

 $$\frac{P(0, w)}{P(1, w)} \geq \frac{P(0, w')}{P(1, w')}.$$

 Holds w/ strict inequality if $\theta^*_{\pi_m}(w) > \theta^*_{\pi_m}(w')$.

- Equivalent to dist’n for protected group is *likelihood ratio dominated* by dist’n of rest of population.

